Generalized quivers associated to reductive groups
Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 151-173.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We generalize the definition of quiver representation to arbitrary reductive groups. The classical definition corresponds to the general linear group. We also show that for classical groups our definition gives symplectic and orthogonal representations of quivers with involution inverting the direction of arrows.
DOI : 10.4064/cm94-2-1
Mots-clés : generalize definition quiver representation arbitrary reductive groups classical definition corresponds general linear group classical groups definition gives symplectic orthogonal representations quivers involution inverting direction arrows

Harm Derksen 1 ; Jerzy Weyman 2

1 Department of Mathematics University of Michigan Ann Arbor, MI 48109, U.S.A.
2 Department of Mathematics Northeastern University Boston, MA 02115, U.S.A.
@article{10_4064_cm94_2_1,
     author = {Harm Derksen and Jerzy Weyman},
     title = {Generalized quivers associated to reductive groups},
     journal = {Colloquium Mathematicum},
     pages = {151--173},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2002},
     doi = {10.4064/cm94-2-1},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm94-2-1/}
}
TY  - JOUR
AU  - Harm Derksen
AU  - Jerzy Weyman
TI  - Generalized quivers associated to reductive groups
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 151
EP  - 173
VL  - 94
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm94-2-1/
DO  - 10.4064/cm94-2-1
LA  - en
ID  - 10_4064_cm94_2_1
ER  - 
%0 Journal Article
%A Harm Derksen
%A Jerzy Weyman
%T Generalized quivers associated to reductive groups
%J Colloquium Mathematicum
%D 2002
%P 151-173
%V 94
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm94-2-1/
%R 10.4064/cm94-2-1
%G en
%F 10_4064_cm94_2_1
Harm Derksen; Jerzy Weyman. Generalized quivers associated to reductive groups. Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 151-173. doi : 10.4064/cm94-2-1. https://geodesic-test.mathdoc.fr/articles/10.4064/cm94-2-1/

Cité par Sources :