On some problems of M/akowski–Schinzel and Erdős concerning the arithmetical functions ϕ and σ
Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 111-130.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let σ(n) denote the sum of positive divisors of the integer n, and let ϕ denote Euler's function, that is, ϕ(n) is the number of integers in the interval [1,n] that are relatively prime to n. It has been conjectured by Mąkowski and Schinzel that σ(ϕ(n))/n1/2 for all n. We show that σ(ϕ(n))/n on a set of numbers n of asymptotic density 1. In addition, we study the average order of σ(ϕ(n))/n as well as its range. We use similar methods to prove a conjecture of Erdős that ϕ(nϕ(n))ϕ(n) on a set of asymptotic density 1.
DOI : 10.4064/cm92-1-10
Mots-clés : sigma denote sum positive divisors integer phi denote eulers function phi number integers interval relatively prime has conjectured kowski schinzel sigma phi sigma phi infty set numbers asymptotic density addition study average order sigma phi its range similar methods prove conjecture erd phi n phi phi set asymptotic density

Florian Luca 1 ; Carl Pomerance 2

1 Instituto de Matemáticas de la UNAM Campus Morelia Ap. Postal 61-3 (Xangari) Morelia, Michoacán, Mexico
2 Lucent Technologies Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974, U.S.A.
@article{10_4064_cm92_1_10,
     author = {Florian Luca and Carl Pomerance},
     title = {On some problems of {M/akowski{\textendash}Schinzel} and {Erd\H{o}s
concerning} the arithmetical functions $\phi $ and $\sigma $},
     journal = {Colloquium Mathematicum},
     pages = {111--130},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2002},
     doi = {10.4064/cm92-1-10},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm92-1-10/}
}
TY  - JOUR
AU  - Florian Luca
AU  - Carl Pomerance
TI  - On some problems of M/akowski–Schinzel and Erdős
concerning the arithmetical functions $\phi $ and $\sigma $
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 111
EP  - 130
VL  - 92
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm92-1-10/
DO  - 10.4064/cm92-1-10
LA  - en
ID  - 10_4064_cm92_1_10
ER  - 
%0 Journal Article
%A Florian Luca
%A Carl Pomerance
%T On some problems of M/akowski–Schinzel and Erdős
concerning the arithmetical functions $\phi $ and $\sigma $
%J Colloquium Mathematicum
%D 2002
%P 111-130
%V 92
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm92-1-10/
%R 10.4064/cm92-1-10
%G en
%F 10_4064_cm92_1_10
Florian Luca; Carl Pomerance. On some problems of M/akowski–Schinzel and Erdős
concerning the arithmetical functions $\phi $ and $\sigma $. Colloquium Mathematicum, Tome 92 (2002) no. 1, pp. 111-130. doi : 10.4064/cm92-1-10. https://geodesic-test.mathdoc.fr/articles/10.4064/cm92-1-10/

Cité par Sources :