Congruent numbers over real number fields
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 179-186.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is classical that a natural number n is congruent iff the rank of Q-points on En:y2=x3n2x is positive. In this paper, following Tada (2001), we consider generalised congruent numbers. We extend the above classical criterion to several infinite families of real number fields.
DOI : 10.4064/cm128-2-3
Mots-clés : classical natural number congruent rank mathbb points n positive paper following tada consider generalised congruent numbers extend above classical criterion several infinite families real number fields

Tomasz Jędrzejak 1

1 Institute of Mathematics University of Szczecin Wielkopolska 15 70-451 Szczecin, Poland
@article{10_4064_cm128_2_3,
     author = {Tomasz J\k{e}drzejak},
     title = {Congruent numbers over real number fields},
     journal = {Colloquium Mathematicum},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2012},
     doi = {10.4064/cm128-2-3},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm128-2-3/}
}
TY  - JOUR
AU  - Tomasz Jędrzejak
TI  - Congruent numbers over real number fields
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 179
EP  - 186
VL  - 128
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm128-2-3/
DO  - 10.4064/cm128-2-3
LA  - en
ID  - 10_4064_cm128_2_3
ER  - 
%0 Journal Article
%A Tomasz Jędrzejak
%T Congruent numbers over real number fields
%J Colloquium Mathematicum
%D 2012
%P 179-186
%V 128
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm128-2-3/
%R 10.4064/cm128-2-3
%G en
%F 10_4064_cm128_2_3
Tomasz Jędrzejak. Congruent numbers over real number fields. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 179-186. doi : 10.4064/cm128-2-3. https://geodesic-test.mathdoc.fr/articles/10.4064/cm128-2-3/
  • Das, Shamik; Saikia, Anupam Congruent numbers and class groups of associated quadratic fields, Class groups of number fields and related topics. ICCGNERT 2021 and 2022, Kozhikode, India, October 21–24, 2021 and November 21–24, 2022, Singapore: Springer, 2024, pp. 107-118 | DOI:10.1007/978-981-97-6911-7_7 | Zbl:8030103
  • Das, Shamik; Saikia, Anupam On θ-congruent numbers over real number fields, Bulletin of the Australian Mathematical Society, Volume 103 (2021) no. 2, pp. 218-229 | DOI:10.1017/s0004972720000672 | Zbl:1468.11124

Cité par 2 documents. Sources : zbMATH