Cubic forms, powers of primes and the Kraus method
Colloquium Mathematicum, Tome 128 (2012) no. 1, pp. 35-48.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the Diophantine equation (x+y)(x2+Bxy+y2)=Dzp, where B, D are integers (B±2, D0) and p is a prime >5. We give Kraus type criteria of nonsolvability for this equation (explicitly, for many B and D) in terms of Galois representations and modular forms. We apply these criteria to numerous equations (with B=0,1,3,4,5,6, specific D's, and p(10,106)). In the last section we discuss reductions of the above Diophantine equations to those of signature (p,p,2).
DOI : 10.4064/cm128-1-5
Mots-clés : consider diophantine equation bxy where integers prime kraus type criteria nonsolvability equation explicitly many terms galois representations modular forms apply these criteria numerous equations specific section discuss reductions above diophantine equations those signature

Andrzej Dąbrowski 1 ; Tomasz Jędrzejak 1 ; Karolina Krawciów 1

1 Institute of Mathematics University of Szczecin Wielkopolska 15 70-451 Szczecin, Poland
@article{10_4064_cm128_1_5,
     author = {Andrzej D\k{a}browski and Tomasz J\k{e}drzejak and Karolina Krawci\'ow},
     title = {Cubic forms, powers of primes and the {Kraus} method},
     journal = {Colloquium Mathematicum},
     pages = {35--48},
     publisher = {mathdoc},
     volume = {128},
     number = {1},
     year = {2012},
     doi = {10.4064/cm128-1-5},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm128-1-5/}
}
TY  - JOUR
AU  - Andrzej Dąbrowski
AU  - Tomasz Jędrzejak
AU  - Karolina Krawciów
TI  - Cubic forms, powers of primes and the Kraus method
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 35
EP  - 48
VL  - 128
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm128-1-5/
DO  - 10.4064/cm128-1-5
LA  - en
ID  - 10_4064_cm128_1_5
ER  - 
%0 Journal Article
%A Andrzej Dąbrowski
%A Tomasz Jędrzejak
%A Karolina Krawciów
%T Cubic forms, powers of primes and the Kraus method
%J Colloquium Mathematicum
%D 2012
%P 35-48
%V 128
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm128-1-5/
%R 10.4064/cm128-1-5
%G en
%F 10_4064_cm128_1_5
Andrzej Dąbrowski; Tomasz Jędrzejak; Karolina Krawciów. Cubic forms, powers of primes and the Kraus method. Colloquium Mathematicum, Tome 128 (2012) no. 1, pp. 35-48. doi : 10.4064/cm128-1-5. https://geodesic-test.mathdoc.fr/articles/10.4064/cm128-1-5/

Cité par Sources :