On affinity of Peano type functions
Colloquium Mathematicum, Tome 127 (2012) no. 2, pp. 233-242.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if n is a positive integer and 20n, then for every positive integer m and for every real constant c>0 there are functions f1,,fn+m:RnR such that (f1,,fn+m)(Rn)=Rn+m and for every xRn there exists a strictly increasing sequence (i1,,in) of numbers from {1,,n+m} and a wZn such that \[ (f_{i_1},\dots,f_{i_n})(y)=y+w \quad \mbox{for } y \in x +(-c,c) \times \mathbb R^{n-1}. \]
DOI : 10.4064/cm127-2-6
Mots-clés : positive integer aleph leq aleph every positive integer every real constant there functions dots colon mathbb rightarrow mathbb dots mathbb mathbb every mathbb there exists strictly increasing sequence dots numbers dots mathbb dots quad mbox c times mathbb n

Tomasz Słonka 1

1 Uniwersytet Śląski 40-007 Katowice, Poland
@article{10_4064_cm127_2_6,
     author = {Tomasz S{\l}onka},
     title = {On affinity of {Peano} type functions},
     journal = {Colloquium Mathematicum},
     pages = {233--242},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2012},
     doi = {10.4064/cm127-2-6},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm127-2-6/}
}
TY  - JOUR
AU  - Tomasz Słonka
TI  - On affinity of Peano type functions
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 233
EP  - 242
VL  - 127
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm127-2-6/
DO  - 10.4064/cm127-2-6
LA  - en
ID  - 10_4064_cm127_2_6
ER  - 
%0 Journal Article
%A Tomasz Słonka
%T On affinity of Peano type functions
%J Colloquium Mathematicum
%D 2012
%P 233-242
%V 127
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm127-2-6/
%R 10.4064/cm127-2-6
%G en
%F 10_4064_cm127_2_6
Tomasz Słonka. On affinity of Peano type functions. Colloquium Mathematicum, Tome 127 (2012) no. 2, pp. 233-242. doi : 10.4064/cm127-2-6. https://geodesic-test.mathdoc.fr/articles/10.4064/cm127-2-6/

Cité par Sources :