Maximal entropy measures in dimension zero
Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 55-66.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that an invertible zero-dimensional dynamical system has an invariant measure of maximal entropy if and only if it is an extension of an asymptotically h-expansive system of equal topological entropy.
DOI : 10.4064/cm127-1-4
Mots-clés : prove invertible zero dimensional dynamical system has invariant measure maximal entropy only an extension asymptotically h expansive system equal topological entropy

Dawid Huczek 1

1 Institute of Mathematics and Computer Science Wrocław University of Technology 50-372 Wrocław, Poland
@article{10_4064_cm127_1_4,
     author = {Dawid Huczek},
     title = {Maximal entropy measures in dimension zero},
     journal = {Colloquium Mathematicum},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {2012},
     doi = {10.4064/cm127-1-4},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm127-1-4/}
}
TY  - JOUR
AU  - Dawid Huczek
TI  - Maximal entropy measures in dimension zero
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 55
EP  - 66
VL  - 127
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm127-1-4/
DO  - 10.4064/cm127-1-4
LA  - en
ID  - 10_4064_cm127_1_4
ER  - 
%0 Journal Article
%A Dawid Huczek
%T Maximal entropy measures in dimension zero
%J Colloquium Mathematicum
%D 2012
%P 55-66
%V 127
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm127-1-4/
%R 10.4064/cm127-1-4
%G en
%F 10_4064_cm127_1_4
Dawid Huczek. Maximal entropy measures in dimension zero. Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 55-66. doi : 10.4064/cm127-1-4. https://geodesic-test.mathdoc.fr/articles/10.4064/cm127-1-4/

Cité par Sources :