Twisted group rings of strongly unbounded representation type
Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 265-287.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let S be a commutative local ring of characteristic p, which is not a~field, S the multiplicative group of S, W a subgroup of S, G a finite p-group, and SλG a twisted group ring of the group G and of the ring S with a~2-cocycle λZ2(G,S). Denote by Indm(SλG) the set of isomorphism classes of indecomposable SλG-modules of S-rank m. We exhibit rings SλG for which there exists a function fλ:NN such that fλ(n)n and Indfλ(n)(SλG) is an infinite set for every natural n>1. In special cases fλ(N) contains every natural number m>1 such that Indm(SλG) is an infinite set. We also introduce the concept of projective (S,W)-representation type for the group G and we single out finite groups of every type.
DOI : 10.4064/cm100-2-8
Mots-clés : commutative local ring characteristic which field * multiplicative group subgroup * finite p group lambda twisted group ring group ring cocycle lambda * denote mathop ind nolimits lambda set isomorphism classes indecomposable lambda g modules s rank exhibit rings lambda which there exists function lambda mathbb rightarrow mathbb lambda geq mathop ind nolimits lambda lambda infinite set every natural special cases lambda mathbb contains every natural number mathop ind nolimits lambda infinite set introduce concept projective representation type group single out finite groups every type

Leonid F. Barannyk 1 ; Dariusz Klein 2

1 Institute of Mathematics Pedagogical University of S/lupsk Arciszewskiego 22b 76-200 S/lupsk, Poland
2 Institute of Mathematics Pedagogical University of S/lupsk Arciszewskiego 22b, 76-200 S/lupsk, Poland
@article{10_4064_cm100_2_8,
     author = {Leonid F. Barannyk and Dariusz Klein},
     title = {Twisted group rings of strongly unbounded
 representation type},
     journal = {Colloquium Mathematicum},
     pages = {265--287},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2004},
     doi = {10.4064/cm100-2-8},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-2-8/}
}
TY  - JOUR
AU  - Leonid F. Barannyk
AU  - Dariusz Klein
TI  - Twisted group rings of strongly unbounded
 representation type
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 265
EP  - 287
VL  - 100
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-2-8/
DO  - 10.4064/cm100-2-8
LA  - en
ID  - 10_4064_cm100_2_8
ER  - 
%0 Journal Article
%A Leonid F. Barannyk
%A Dariusz Klein
%T Twisted group rings of strongly unbounded
 representation type
%J Colloquium Mathematicum
%D 2004
%P 265-287
%V 100
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-2-8/
%R 10.4064/cm100-2-8
%G en
%F 10_4064_cm100_2_8
Leonid F. Barannyk; Dariusz Klein. Twisted group rings of strongly unbounded
 representation type. Colloquium Mathematicum, Tome 100 (2004) no. 2, pp. 265-287. doi : 10.4064/cm100-2-8. https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-2-8/

Cité par Sources :