On convolution squares of singular measures
Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 9-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for every compact, connected group G there is a singular measure μ such that the Fourier series of μμ converges uniformly on G. Our results extend the earlier results of Saeki and Dooley–Gupta.
DOI : 10.4064/cm100-1-2
Mots-clés : prove every compact connected group there singular measure fourier series * converges uniformly results extend earlier results saeki dooley gupta

Sanjiv K. Gupta 1 ; Kathryn E. Hare 2

1 Department of Mathematics and Statistics Sultan Zaboos University P.O. Box 36 Al Khodh 123, Sultanate of Oman
2 Department of Pure Mathematics University of Waterloo Waterloo, Ont., Canada, N2L 3G1
@article{10_4064_cm100_1_2,
     author = {Sanjiv K. Gupta and Kathryn E. Hare},
     title = {On convolution squares of singular measures},
     journal = {Colloquium Mathematicum},
     pages = {9--16},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2004},
     doi = {10.4064/cm100-1-2},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-1-2/}
}
TY  - JOUR
AU  - Sanjiv K. Gupta
AU  - Kathryn E. Hare
TI  - On convolution squares of singular measures
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 9
EP  - 16
VL  - 100
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-1-2/
DO  - 10.4064/cm100-1-2
LA  - en
ID  - 10_4064_cm100_1_2
ER  - 
%0 Journal Article
%A Sanjiv K. Gupta
%A Kathryn E. Hare
%T On convolution squares of singular measures
%J Colloquium Mathematicum
%D 2004
%P 9-16
%V 100
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-1-2/
%R 10.4064/cm100-1-2
%G en
%F 10_4064_cm100_1_2
Sanjiv K. Gupta; Kathryn E. Hare. On convolution squares of singular measures. Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 9-16. doi : 10.4064/cm100-1-2. https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-1-2/

Cité par Sources :