Besov spaces and 2-summing operators
Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Π2 be the operator ideal of all absolutely 2-summing operators and let Im be the identity map of the m-dimensional linear space. We first establish upper estimates for some mixing norms of Im. Employing these estimates, we study the embedding operators between Besov function spaces as mixing operators. The result obtained is applied to give sufficient conditions under which certain kinds of integral operators, acting on a Besov function space, belong to Π2; in this context, we also consider the case of the square Π2Π2.
DOI : 10.4064/cm100-1-1
Mots-clés : mit operator ideal absolutely summing operators identity map m dimensional linear space first establish upper estimates mixing norms employing these estimates study embedding operators between besov function spaces mixing operators result obtained applied sufficient conditions under which certain kinds integral operators acting besov function space belong mit context consider the square mit circ mit

M. A. Fugarolas 1

1 Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela Campus Universitario Sur 15782 Santiago de Compostela, Spain
@article{10_4064_cm100_1_1,
     author = {M. A. Fugarolas},
     title = {Besov spaces and $2$-summing operators},
     journal = {Colloquium Mathematicum},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2004},
     doi = {10.4064/cm100-1-1},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-1-1/}
}
TY  - JOUR
AU  - M. A. Fugarolas
TI  - Besov spaces and $2$-summing operators
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 1
EP  - 8
VL  - 100
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-1-1/
DO  - 10.4064/cm100-1-1
LA  - en
ID  - 10_4064_cm100_1_1
ER  - 
%0 Journal Article
%A M. A. Fugarolas
%T Besov spaces and $2$-summing operators
%J Colloquium Mathematicum
%D 2004
%P 1-8
%V 100
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-1-1/
%R 10.4064/cm100-1-1
%G en
%F 10_4064_cm100_1_1
M. A. Fugarolas. Besov spaces and $2$-summing operators. Colloquium Mathematicum, Tome 100 (2004) no. 1, pp. 1-8. doi : 10.4064/cm100-1-1. https://geodesic-test.mathdoc.fr/articles/10.4064/cm100-1-1/

Cité par Sources :