The topology of the unit interval is not uniquely determined by its continuous self maps among set systems
Colloquium Mathematicum, Tome 31 (1974) no. 2, pp. 179-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-31-2-179-188

Jiří Rosický 1

1
@article{10_4064_cm_31_2_179_188,
     author = {Ji\v{r}{\'\i} Rosick\'y},
     title = {The topology of the unit interval is not uniquely determined by its continuous self maps among set systems},
     journal = {Colloquium Mathematicum},
     pages = {179--188},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1974},
     doi = {10.4064/cm-31-2-179-188},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/cm-31-2-179-188/}
}
TY  - JOUR
AU  - Jiří Rosický
TI  - The topology of the unit interval is not uniquely determined by its continuous self maps among set systems
JO  - Colloquium Mathematicum
PY  - 1974
SP  - 179
EP  - 188
VL  - 31
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/cm-31-2-179-188/
DO  - 10.4064/cm-31-2-179-188
LA  - en
ID  - 10_4064_cm_31_2_179_188
ER  - 
%0 Journal Article
%A Jiří Rosický
%T The topology of the unit interval is not uniquely determined by its continuous self maps among set systems
%J Colloquium Mathematicum
%D 1974
%P 179-188
%V 31
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/cm-31-2-179-188/
%R 10.4064/cm-31-2-179-188
%G en
%F 10_4064_cm_31_2_179_188
Jiří Rosický. The topology of the unit interval is not uniquely determined by its continuous self maps among set systems. Colloquium Mathematicum, Tome 31 (1974) no. 2, pp. 179-188. doi : 10.4064/cm-31-2-179-188. https://geodesic-test.mathdoc.fr/articles/10.4064/cm-31-2-179-188/

Cité par Sources :