Open Subsets of LF-spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 25-37.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let F=indlimFn be an infinite-dimensional LF-space with density densF=τ (0) such that some Fn is infinite-dimensional and densFn=τ. It is proved that every open subset of F is homeomorphic to the product of an 2(τ)-manifold and R=indlimRn (hence the product of an open subset of 2(τ) and R). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.
DOI : 10.4064/ba56-1-4
Mots-clés : mathop ind lim infinite dimensional lf space density mathop dens tau geq aleph infinite dimensional mathop dens tau proved every subset homeomorphic product ell tau manifold mathbb infty mathop ind lim mathbb hence product subset ell tau mathbb infty consequence sets homeomorphic have homotopy type

Kotaro Mine 1 ; Katsuro Sakai 1

1 Institute of Mathematics University of Tsukuba Tsukuba, 305-8571, Japan
@article{10_4064_ba56_1_4,
     author = {Kotaro Mine and Katsuro Sakai},
     title = {Open {Subsets} of {LF-spaces}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2008},
     doi = {10.4064/ba56-1-4},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/ba56-1-4/}
}
TY  - JOUR
AU  - Kotaro Mine
AU  - Katsuro Sakai
TI  - Open Subsets of LF-spaces
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2008
SP  - 25
EP  - 37
VL  - 56
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/ba56-1-4/
DO  - 10.4064/ba56-1-4
LA  - en
ID  - 10_4064_ba56_1_4
ER  - 
%0 Journal Article
%A Kotaro Mine
%A Katsuro Sakai
%T Open Subsets of LF-spaces
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 25-37
%V 56
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/ba56-1-4/
%R 10.4064/ba56-1-4
%G en
%F 10_4064_ba56_1_4
Kotaro Mine; Katsuro Sakai. Open Subsets of LF-spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 25-37. doi : 10.4064/ba56-1-4. https://geodesic-test.mathdoc.fr/articles/10.4064/ba56-1-4/
  • Banakh, Taras; Yagasaki, Tatsuhiko Diffeomorphism groups of non-compact manifolds endowed with the Whitney C-topology, Topology and its Applications, Volume 179 (2015), pp. 51-61 | DOI:10.1016/j.topol.2014.08.015 | Zbl:1302.58003
  • Banakh, T.; Mine, K.; Repovš, D.; Sakai, K.; Yagasaki, T. Detecting topological groups which are (locally) homeomorphic to LF-spaces, Topology and its Applications, Volume 160 (2013) no. 18, pp. 2272-2284 | DOI:10.1016/j.topol.2013.07.023 | Zbl:1284.57024
  • Banakh, Taras; Repovš, Dušan A topological characterization of LF-spaces, Topology and its Applications, Volume 159 (2012) no. 5, pp. 1475-1488 | DOI:10.1016/j.topol.2012.01.011 | Zbl:1241.57028

Cité par 3 documents. Sources : zbMATH