Convergence in capacity
Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 91-99.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if E(Ω)ujuE(Ω) in Cn-capacity then liminfj(ddcuj)n1{u>}(ddcu)n. This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.
DOI : 10.4064/ap93-1-8
Mots-clés : prove mathcal mit omega mathcal mit omega n capacity mathop lim inf infty geq infty result consider convergence capacity bounded hyperconvex domains compact hler manifolds

Pham Hoang Hiep 1

1 Department of Mathematics Hanoi University of Education (Dai Hoc Su Pham HaNoi) Cau Giay, Hanoi, VietNam
@article{10_4064_ap93_1_8,
     author = {Pham Hoang Hiep},
     title = {Convergence in capacity},
     journal = {Annales Polonici Mathematici},
     pages = {91--99},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2008},
     doi = {10.4064/ap93-1-8},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/ap93-1-8/}
}
TY  - JOUR
AU  - Pham Hoang Hiep
TI  - Convergence in capacity
JO  - Annales Polonici Mathematici
PY  - 2008
SP  - 91
EP  - 99
VL  - 93
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/ap93-1-8/
DO  - 10.4064/ap93-1-8
LA  - en
ID  - 10_4064_ap93_1_8
ER  - 
%0 Journal Article
%A Pham Hoang Hiep
%T Convergence in capacity
%J Annales Polonici Mathematici
%D 2008
%P 91-99
%V 93
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/ap93-1-8/
%R 10.4064/ap93-1-8
%G en
%F 10_4064_ap93_1_8
Pham Hoang Hiep. Convergence in capacity. Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 91-99. doi : 10.4064/ap93-1-8. https://geodesic-test.mathdoc.fr/articles/10.4064/ap93-1-8/

Cité par Sources :