Positive periodic solutions of functional differential equations with infinite delay
Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 75-83.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The author applies a generalized Leggett–Williams fixed point theorem to the study of the nonlinear functional differential equation $$ x'(t)=-a(t,x(t))x(t)+f(t,x_t). $$ Sufficient conditions are established for the existence of multiple positive periodic solutions.
DOI : 10.4064/ap93-1-6
Mots-clés : author applies generalized leggett williams fixed point theorem study nonlinear functional differential equation a t sufficient conditions established existence multiple positive periodic solutions

Changxiu Song 1

1 School of Applied Mathematics Guangdong University of Technology Guangzhou 510006, P.R. China
@article{10_4064_ap93_1_6,
     author = {Changxiu Song},
     title = {Positive periodic solutions of
 functional differential equations with infinite delay},
     journal = {Annales Polonici Mathematici},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2008},
     doi = {10.4064/ap93-1-6},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/ap93-1-6/}
}
TY  - JOUR
AU  - Changxiu Song
TI  - Positive periodic solutions of
 functional differential equations with infinite delay
JO  - Annales Polonici Mathematici
PY  - 2008
SP  - 75
EP  - 83
VL  - 93
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/ap93-1-6/
DO  - 10.4064/ap93-1-6
LA  - en
ID  - 10_4064_ap93_1_6
ER  - 
%0 Journal Article
%A Changxiu Song
%T Positive periodic solutions of
 functional differential equations with infinite delay
%J Annales Polonici Mathematici
%D 2008
%P 75-83
%V 93
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/ap93-1-6/
%R 10.4064/ap93-1-6
%G en
%F 10_4064_ap93_1_6
Changxiu Song. Positive periodic solutions of
 functional differential equations with infinite delay. Annales Polonici Mathematici, Tome 93 (2008) no. 1, pp. 75-83. doi : 10.4064/ap93-1-6. https://geodesic-test.mathdoc.fr/articles/10.4064/ap93-1-6/

Cité par Sources :