The transmission problem with boundary conditions given by real measures
Annales Polonici Mathematici, Tome 92 (2007) no. 3, pp. 243-259.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The unique solvability of the problem Δu=0 in G+G, u+au=f on G+, n+u+bn+u=g on G+ is proved. Here a, b are positive constants and g is a real measure. The solution is constructed using the boundary integral equation method.
DOI : 10.4064/ap92-3-4
Mots-clés : unique solvability problem mit delta cup au partial cdot nabla bn cdot nabla partial proved here positive constants real measure solution constructed using boundary integral equation method

Dagmar Medková 1

1 Department of Technical Mathematics Faculty of Mechanical Engineering Czech Technical University Karlovo nám. 13 12 135 Praha 2, Czech Republic
@article{10_4064_ap92_3_4,
     author = {Dagmar Medkov\'a},
     title = {The transmission problem with
 boundary conditions given by real measures},
     journal = {Annales Polonici Mathematici},
     pages = {243--259},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2007},
     doi = {10.4064/ap92-3-4},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/ap92-3-4/}
}
TY  - JOUR
AU  - Dagmar Medková
TI  - The transmission problem with
 boundary conditions given by real measures
JO  - Annales Polonici Mathematici
PY  - 2007
SP  - 243
EP  - 259
VL  - 92
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/ap92-3-4/
DO  - 10.4064/ap92-3-4
LA  - en
ID  - 10_4064_ap92_3_4
ER  - 
%0 Journal Article
%A Dagmar Medková
%T The transmission problem with
 boundary conditions given by real measures
%J Annales Polonici Mathematici
%D 2007
%P 243-259
%V 92
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/ap92-3-4/
%R 10.4064/ap92-3-4
%G en
%F 10_4064_ap92_3_4
Dagmar Medková. The transmission problem with
 boundary conditions given by real measures. Annales Polonici Mathematici, Tome 92 (2007) no. 3, pp. 243-259. doi : 10.4064/ap92-3-4. https://geodesic-test.mathdoc.fr/articles/10.4064/ap92-3-4/

Cité par Sources :