Long-time behavior for 2D non-autonomous g-Navier–Stokes equations
Annales Polonici Mathematici, Tome 103 (2012) no. 3, pp. 277-302.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the first initial boundary value problem for the 2D non-autonomous g-Navier–Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite-dimensional pullback Dσ-attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms. Furthermore, when the force is time-independent and “small”, the existence, uniqueness and global stability of a stationary solution are also studied.
DOI : 10.4064/ap103-3-5
Mots-clés : study first initial boundary value problem non autonomous g navier stokes equations arbitrary bounded unbounded domain satisfying poincar inequality existence weak solution problem proved using galerkin method existence unique minimal finite dimensional pullback mathcal sigma attractor process associated problem respect large class non autonomous forcing terms furthermore force time independent small existence uniqueness global stability stationary solution studied

Cung The Anh 1 ; Dao Trong Quyet 2

1 Department of Mathematics Hanoi National University of Education 136 Xuan Thuy, Cau Giay Hanoi, Vietnam
2 Faculty of Information Technology Le Qui Don Technical University 100 Hoang Quoc Viet, Cau Giay Hanoi, Vietnam
@article{10_4064_ap103_3_5,
     author = {Cung The Anh and Dao Trong Quyet},
     title = {Long-time behavior for {2D} non-autonomous $g${-Navier{\textendash}Stokes} equations},
     journal = {Annales Polonici Mathematici},
     pages = {277--302},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2012},
     doi = {10.4064/ap103-3-5},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/ap103-3-5/}
}
TY  - JOUR
AU  - Cung The Anh
AU  - Dao Trong Quyet
TI  - Long-time behavior for 2D non-autonomous $g$-Navier–Stokes equations
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 277
EP  - 302
VL  - 103
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/ap103-3-5/
DO  - 10.4064/ap103-3-5
LA  - en
ID  - 10_4064_ap103_3_5
ER  - 
%0 Journal Article
%A Cung The Anh
%A Dao Trong Quyet
%T Long-time behavior for 2D non-autonomous $g$-Navier–Stokes equations
%J Annales Polonici Mathematici
%D 2012
%P 277-302
%V 103
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/ap103-3-5/
%R 10.4064/ap103-3-5
%G en
%F 10_4064_ap103_3_5
Cung The Anh; Dao Trong Quyet. Long-time behavior for 2D non-autonomous $g$-Navier–Stokes equations. Annales Polonici Mathematici, Tome 103 (2012) no. 3, pp. 277-302. doi : 10.4064/ap103-3-5. https://geodesic-test.mathdoc.fr/articles/10.4064/ap103-3-5/
  • Wu, Yunshun; Nguyen, Da Tien; Bai, Hailang Bi-spatial pullback random attractors of stochastic ϱ-Navier-Stokes equations: existence, regularity and finite fractal dimension, Journal of Mathematical Physics, Volume 66 (2025) no. 4, p. 22 (Id/No 041504) | DOI:10.1063/5.0239336 | Zbl:8039280
  • Dao Trong Quyet; Le Thi Thuy Pullback attractors in Vg for non-autonomous 2D g-Navier-Stokes equations in unbounded domains, Differential Equations and Dynamical Systems, Volume 32 (2024) no. 1, pp. 293-312 | DOI:10.1007/s12591-021-00571-x | Zbl:1532.35339
  • Li, Fuzhi; Xu, Dongmei Asymptotically autonomous dynamics for non-autonomous stochastic g-Navier-Stokes equation with additive noise, Discrete and Continuous Dynamical Systems. Series B, Volume 28 (2023) no. 1, pp. 516-537 | DOI:10.3934/dcdsb.2022087 | Zbl:1498.35393
  • Wang, Xiaoxia; Jiang, Jinping The uniform asymptotic behavior of solutions for 2D g-Navier-Stokes equations with nonlinear dampness and its dimensions, Electronic Research Archive, Volume 31 (2023) no. 7, pp. 3963-3979 | DOI:10.3934/era.2023201 | Zbl:1532.35356
  • Aadi, Sultana Ben; Akhlil, Khalid; Aayadi, Khadija Weak solutions to the time-fractional g-Navier-Stokes equations and optimal control, Journal of Applied Analysis, Volume 28 (2022) no. 1, pp. 135-147 | DOI:10.1515/jaa-2021-2062 | Zbl:1492.35214
  • Wang, Xiaoxia; Jiang, Jinping The long-time behavior of 2D nonautonomous g-Navier-Stokes equations with weak dampness and time delay, Journal of Function Spaces, Volume 2022 (2022), p. 11 (Id/No 2034264) | DOI:10.1155/2022/2034264 | Zbl:1497.35349
  • Li, Fuzhi; Xu, Dongmei; Yu, Jiali Regular measurable backward compact random attractor for g-Navier-Stokes equation, Communications on Pure and Applied Analysis, Volume 19 (2020) no. 6, pp. 3137-3157 | DOI:10.3934/cpaa.2020136 | Zbl:1441.37087
  • Li, Fuzhi; Xu, Dongmei Local uniformly upper semi-continuity of random attractor for g-Navier-Stokes equation, Journal of Mathematical Physics, Volume 61 (2020) no. 10, p. 101502 | DOI:10.1063/5.0011552 | Zbl:1454.35257
  • Nguyen, Viet Tuan Stabilization of 2D g-Navier-Stokes equations, Communications of the Korean Mathematical Society, Volume 34 (2019) no. 3, pp. 819-839 | DOI:10.4134/ckms.c180265 | Zbl:1428.35308
  • Li, Fuzhi; Li, Yangrong Asymptotic behavior of stochastic g-Navier-Stokes equations on a sequence of expanding domains, Journal of Mathematical Physics, Volume 60 (2019) no. 6, p. 061505 | DOI:10.1063/1.5083695 | Zbl:1418.35292
  • Dao, Trong Quyet; Nguyen, Viet Tuan On the stationary solutions to 2D g-Navier-Stokes equations, Acta Mathematica Vietnamica, Volume 42 (2017) no. 2, pp. 357-367 | DOI:10.1007/s40306-016-0180-1 | Zbl:1373.35240
  • Cung The Anh; Nguyen Van Thanh; Nguyen Viet Tuan On the stability of solutions to stochastic 2D g-Navier-Stokes equations with finite delays, Random Operators and Stochastic Equations, Volume 25 (2017) no. 4, pp. 211-224 | DOI:10.1515/rose-2017-0016 | Zbl:1379.35237
  • Quyet, Dao Trong Pullback attractors for strong solutions of 2d non-autonomous g-Navier-Stokes equations, Acta Mathematica Vietnamica, Volume 40 (2015) no. 4, pp. 637-651 | DOI:10.1007/s40306-014-0073-0 | Zbl:1330.35294
  • Quyet, Dao Trong Spectral Galerkin method in space and time for the 2D g-Navier-Stokes equations, Abstract and Applied Analysis, Volume 2013 (2013), p. 18 (Id/No 805685) | DOI:10.1155/2013/805685 | Zbl:1470.76059
  • Anh, Cung The; Quyet, Dao Trong; Tinh, Dao Thanh Existence and finite time approximation of strong solutions to 2D g-Navier-Stokes equations, Acta Mathematica Vietnamica, Volume 38 (2013) no. 3, pp. 413-428 | DOI:10.1007/s40306-013-0023-2 | Zbl:1277.35275

Cité par 15 documents. Sources : zbMATH