Three periodic solutions for an ordinary differential inclusion with two parameters
Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 89-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Applying a nonsmooth version of a three critical points theorem of Ricceri, we prove the existence of three periodic solutions for an ordinary differential inclusion depending on two parameters.
DOI : 10.4064/ap103-1-7
Mots-clés : applying nonsmooth version three critical points theorem ricceri prove existence three periodic solutions ordinary differential inclusion depending parameters

Antonio Iannizzotto 1

1 Dipartimento di Matematica e Informatica Università degli Studi di Catania Viale A. Doria 6 95125 Catania, Italy
@article{10_4064_ap103_1_7,
     author = {Antonio Iannizzotto},
     title = {Three periodic solutions for an
 ordinary differential inclusion with two parameters},
     journal = {Annales Polonici Mathematici},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2012},
     doi = {10.4064/ap103-1-7},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/ap103-1-7/}
}
TY  - JOUR
AU  - Antonio Iannizzotto
TI  - Three periodic solutions for an
 ordinary differential inclusion with two parameters
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 89
EP  - 100
VL  - 103
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/ap103-1-7/
DO  - 10.4064/ap103-1-7
LA  - en
ID  - 10_4064_ap103_1_7
ER  - 
%0 Journal Article
%A Antonio Iannizzotto
%T Three periodic solutions for an
 ordinary differential inclusion with two parameters
%J Annales Polonici Mathematici
%D 2012
%P 89-100
%V 103
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/ap103-1-7/
%R 10.4064/ap103-1-7
%G en
%F 10_4064_ap103_1_7
Antonio Iannizzotto. Three periodic solutions for an
 ordinary differential inclusion with two parameters. Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 89-100. doi : 10.4064/ap103-1-7. https://geodesic-test.mathdoc.fr/articles/10.4064/ap103-1-7/

Cité par Sources :