Self-avoiding walks on the lattice Z2 with the 8-neighbourhood system
Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 169-180.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper deals with the properties of self-avoiding walks defined on the lattice with the 8-neighbourhood system. We compute the number of walks, bridges and mean-square displacement for N=1 through 13 (N is the number of steps of the self-avoiding walk). We also estimate the connective constant and critical exponents, and study finite memory and generating functions. We show applications of this kind of walk. In addition, we compute upper bounds for the number of walks and the connective constant.
DOI : 10.4064/am28-2-4
Mots-clés : paper deals properties self avoiding walks defined lattice neighbourhood system compute number walks bridges mean square displacement through number steps self avoiding walk estimate connective constant critical exponents study finite memory generating functions applications kind walk addition compute upper bounds number walks connective constant

Andrzej Chydzi/nski 1 ; Bogdan Smo/lka 2

1 Department of Mathematics Silesian Technical University Kaszubska 23 44-101 Gliwice, Poland
2 Department of Computer Science Silesian Technical University Akademicka 16 44-101 Gliwice, Poland
@article{10_4064_am28_2_4,
     author = {Andrzej Chydzi/nski and Bogdan Smo/lka},
     title = {Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system},
     journal = {Applicationes Mathematicae},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2001},
     doi = {10.4064/am28-2-4},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/am28-2-4/}
}
TY  - JOUR
AU  - Andrzej Chydzi/nski
AU  - Bogdan Smo/lka
TI  - Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system
JO  - Applicationes Mathematicae
PY  - 2001
SP  - 169
EP  - 180
VL  - 28
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/am28-2-4/
DO  - 10.4064/am28-2-4
LA  - en
ID  - 10_4064_am28_2_4
ER  - 
%0 Journal Article
%A Andrzej Chydzi/nski
%A Bogdan Smo/lka
%T Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system
%J Applicationes Mathematicae
%D 2001
%P 169-180
%V 28
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/am28-2-4/
%R 10.4064/am28-2-4
%G en
%F 10_4064_am28_2_4
Andrzej Chydzi/nski; Bogdan Smo/lka. Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system. Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 169-180. doi : 10.4064/am28-2-4. https://geodesic-test.mathdoc.fr/articles/10.4064/am28-2-4/

Cité par Sources :