Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Ioannis K. Argyros 1 ; Ramandeep Behl 2 ; S. S. Motsa 3
@article{10_4064_am2331_7_2017, author = {Ioannis K. Argyros and Ramandeep Behl and S. S. Motsa}, title = {Ball convergence for a two-step fourth order derivative-free method for nonlinear equations}, journal = {Applicationes Mathematicae}, pages = {253--263}, publisher = {mathdoc}, volume = {46}, number = {2}, year = {2019}, doi = {10.4064/am2331-7-2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.4064/am2331-7-2017/} }
TY - JOUR AU - Ioannis K. Argyros AU - Ramandeep Behl AU - S. S. Motsa TI - Ball convergence for a two-step fourth order derivative-free method for nonlinear equations JO - Applicationes Mathematicae PY - 2019 SP - 253 EP - 263 VL - 46 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.4064/am2331-7-2017/ DO - 10.4064/am2331-7-2017 LA - en ID - 10_4064_am2331_7_2017 ER -
%0 Journal Article %A Ioannis K. Argyros %A Ramandeep Behl %A S. S. Motsa %T Ball convergence for a two-step fourth order derivative-free method for nonlinear equations %J Applicationes Mathematicae %D 2019 %P 253-263 %V 46 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.4064/am2331-7-2017/ %R 10.4064/am2331-7-2017 %G en %F 10_4064_am2331_7_2017
Ioannis K. Argyros; Ramandeep Behl; S. S. Motsa. Ball convergence for a two-step fourth order derivative-free method for nonlinear equations. Applicationes Mathematicae, Tome 46 (2019) no. 2, pp. 253-263. doi : 10.4064/am2331-7-2017. https://geodesic-test.mathdoc.fr/articles/10.4064/am2331-7-2017/
Cité par Sources :