p-adic quotient sets
Acta Arithmetica, Tome 179 (2017) no. 2, pp. 163-184.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For AN, the question of when R(A)={a/a:a,aA} is dense in the positive real numbers R+ has been examined by many authors over the years. In contrast, the p-adic setting is largely unexplored. We investigate conditions under which R(A) is dense in the p-adic numbers. Techniques from elementary, algebraic, and analytic number theory are employed. We also pose many open questions that should be of general interest.
DOI : 10.4064/aa8579-4-2017
Mots-clés : subseteq mathbb question dense positive real numbers mathbb has examined many authors years contrast p adic setting largely unexplored investigate conditions under which dense p adic numbers techniques elementary algebraic analytic number theory employed pose many questions should general interest

Stephan Ramon Garcia 1 ; Yu Xuan Hong 2 ; Florian Luca 3 ; Elena Pinsker 2 ; Carlo Sanna 4 ; Evan Schechter 2 ; Adam Starr 2

1 Department of Mathematics Pomona College 610 N. College Ave. Claremont, CA 91711, U.S.A. <a href="http://pages.pomona.edu/~sg064747">http://pages.pomona.edu/~sg064747</a>
2 Department of Mathematics Pomona College 610 N. College Ave. Claremont, CA 91711
3 School of Mathematics University of the Witwatersrand Private Bag 3 Wits 2050, Johannesburg, South Africa and Max Planck Institute for Mathematics Vivatsgasse 7 53111 Bonn, Germany
4 Department of Mathematics Università degli Studi di Torino Via Carlo Alberto, 10 10123 Torino, Italy
@article{10_4064_aa8579_4_2017,
     author = {Stephan Ramon Garcia and Yu Xuan Hong and Florian Luca and Elena Pinsker and Carlo Sanna and Evan Schechter and Adam Starr},
     title = {$p$-adic quotient sets},
     journal = {Acta Arithmetica},
     pages = {163--184},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8579-4-2017},
     language = {fr},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/aa8579-4-2017/}
}
TY  - JOUR
AU  - Stephan Ramon Garcia
AU  - Yu Xuan Hong
AU  - Florian Luca
AU  - Elena Pinsker
AU  - Carlo Sanna
AU  - Evan Schechter
AU  - Adam Starr
TI  - $p$-adic quotient sets
JO  - Acta Arithmetica
PY  - 2017
SP  - 163
EP  - 184
VL  - 179
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/aa8579-4-2017/
DO  - 10.4064/aa8579-4-2017
LA  - fr
ID  - 10_4064_aa8579_4_2017
ER  - 
%0 Journal Article
%A Stephan Ramon Garcia
%A Yu Xuan Hong
%A Florian Luca
%A Elena Pinsker
%A Carlo Sanna
%A Evan Schechter
%A Adam Starr
%T $p$-adic quotient sets
%J Acta Arithmetica
%D 2017
%P 163-184
%V 179
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/aa8579-4-2017/
%R 10.4064/aa8579-4-2017
%G fr
%F 10_4064_aa8579_4_2017
Stephan Ramon Garcia; Yu Xuan Hong; Florian Luca; Elena Pinsker; Carlo Sanna; Evan Schechter; Adam Starr. $p$-adic quotient sets. Acta Arithmetica, Tome 179 (2017) no. 2, pp. 163-184. doi : 10.4064/aa8579-4-2017. https://geodesic-test.mathdoc.fr/articles/10.4064/aa8579-4-2017/

Cité par Sources :