On a problem of Sidon for polynomials over finite fields
Acta Arithmetica, Tome 174 (2016) no. 3, pp. 239-254.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ω be a sequence of positive integers. Given a positive integer n, we define \[ r_n(\omega) = | \{ (a,b)\in \mathbb{N}\times \mathbb{N}: a,b \in \omega,\, a+b = n,\, 0 \lt a \lt b \}|. \] S. Sidon conjectured that there exists a sequence ω such that rn(ω)>0 for all n sufficiently large and, for all ϵ>0, \[ \lim_{n \rightarrow \infty} \frac{r_n(\omega)}{n^{\epsilon}} = 0. \] P. Erdős proved this conjecture by showing the existence of a sequence ω of positive integers such that \[ \log n \ll r_n(\omega) \ll \log n. \] In this paper, we prove an analogue of this conjecture in Fq[T], where Fq is a finite field of q elements. More precisely, let ω be a sequence in Fq[T]. Given a polynomial hFq[T], we define \[ r_h(\omega) = |\{(f,g) \in \mathbb{F}_q[T]\times \mathbb{F}_q[T] : f,g\in \omega,\, f+g =h, \deg f, \deg g \leq \deg h,\, f\ne g\}|. \] We show that there exists a sequence ω of polynomials in Fq[T] such that \[ \deg h \ll r_h(\omega) \ll \deg h \] for degh tending to infinity.
DOI : 10.4064/aa8252-3-2016
Mots-clés : omega sequence positive integers given positive integer define omega mathbb times mathbb omega sidon conjectured there exists sequence omega omega sufficiently large epsilon lim rightarrow infty frac omega epsilon erd proved conjecture showing existence sequence omega positive integers log omega log paper prove analogue conjecture mathbb where mathbb finite field elements precisely omega sequence mathbb given polynomial mathbb define omega mathbb times mathbb omega deg deg leq deg there exists sequence omega polynomials mathbb deg omega deg deg tending infinity

Wentang Kuo 1 ; Shuntaro Yamagishi 1

1 Department of Pure Mathematics University of Waterloo Waterloo, ON, N2L 3G1, Canada
@article{10_4064_aa8252_3_2016,
     author = {Wentang Kuo and Shuntaro Yamagishi},
     title = {On a problem of {Sidon} for polynomials over finite fields},
     journal = {Acta Arithmetica},
     pages = {239--254},
     publisher = {mathdoc},
     volume = {174},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8252-3-2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/aa8252-3-2016/}
}
TY  - JOUR
AU  - Wentang Kuo
AU  - Shuntaro Yamagishi
TI  - On a problem of Sidon for polynomials over finite fields
JO  - Acta Arithmetica
PY  - 2016
SP  - 239
EP  - 254
VL  - 174
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/aa8252-3-2016/
DO  - 10.4064/aa8252-3-2016
LA  - en
ID  - 10_4064_aa8252_3_2016
ER  - 
%0 Journal Article
%A Wentang Kuo
%A Shuntaro Yamagishi
%T On a problem of Sidon for polynomials over finite fields
%J Acta Arithmetica
%D 2016
%P 239-254
%V 174
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/aa8252-3-2016/
%R 10.4064/aa8252-3-2016
%G en
%F 10_4064_aa8252_3_2016
Wentang Kuo; Shuntaro Yamagishi. On a problem of Sidon for polynomials over finite fields. Acta Arithmetica, Tome 174 (2016) no. 3, pp. 239-254. doi : 10.4064/aa8252-3-2016. https://geodesic-test.mathdoc.fr/articles/10.4064/aa8252-3-2016/

Cité par Sources :