Rational torsion points on Jacobians of modular curves
Acta Arithmetica, Tome 172 (2016) no. 4, pp. 299-304.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let p be a prime greater than 3. Consider the modular curve X0(3p) over Q and its Jacobian variety J0(3p) over Q. Let T(3p) and C(3p) be the group of rational torsion points on J0(3p) and the cuspidal group of J0(3p), respectively. We prove that the 3-primary subgroups of T(3p) and C(3p) coincide unless p1(mod9) and 3(p1)/31(modp).
DOI : 10.4064/aa8140-12-2015
Mots-clés : prime greater consider modular curve mathbb its jacobian variety mathbb mathcal mathcal group rational torsion points cuspidal group respectively prove primary subgroups mathcal mathcal coincide unless equiv pmod p equiv pmod

Hwajong Yoo 1

1 Center for Geometry and Physics Institute for Basic Science (IBS) Pohang 37673, Republic of Korea
@article{10_4064_aa8140_12_2015,
     author = {Hwajong Yoo},
     title = {Rational torsion points on {Jacobians} of modular curves},
     journal = {Acta Arithmetica},
     pages = {299--304},
     publisher = {mathdoc},
     volume = {172},
     number = {4},
     year = {2016},
     doi = {10.4064/aa8140-12-2015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/aa8140-12-2015/}
}
TY  - JOUR
AU  - Hwajong Yoo
TI  - Rational torsion points on Jacobians of modular curves
JO  - Acta Arithmetica
PY  - 2016
SP  - 299
EP  - 304
VL  - 172
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/aa8140-12-2015/
DO  - 10.4064/aa8140-12-2015
LA  - en
ID  - 10_4064_aa8140_12_2015
ER  - 
%0 Journal Article
%A Hwajong Yoo
%T Rational torsion points on Jacobians of modular curves
%J Acta Arithmetica
%D 2016
%P 299-304
%V 172
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/aa8140-12-2015/
%R 10.4064/aa8140-12-2015
%G en
%F 10_4064_aa8140_12_2015
Hwajong Yoo. Rational torsion points on Jacobians of modular curves. Acta Arithmetica, Tome 172 (2016) no. 4, pp. 299-304. doi : 10.4064/aa8140-12-2015. https://geodesic-test.mathdoc.fr/articles/10.4064/aa8140-12-2015/

Cité par Sources :