Genus theory of p-adic pseudo-measures, Hilbert kernels and abelian p-ramification
Acta Arithmetica, Tome 218 (2025) no. 1, pp. 25-63.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider, for real abelian fields K, the Birch–Tate formula linking #K2(ZK) to ζK(1); we compare, for quadratic and cyclic cubic fields with p{2,3}, #K2(ZK)[p] with the order of the torsion group TK,p of abelian p-ramification theory, given, for all p, by the residue of ζK,p(s) at s=1. This is done, when p|[K:Q], via the “genus theory” of p-adic pseudo-measures, inaugurated in the 1970/80’s (Theorem A). We apply this to prove a conjecture of Deng–Li giving the structure of K2(ZK)[2] for an interesting family of real quadratic fields (Theorem B). Then, for p5, we give a lower bound of rkp(K2(ZK)) in cyclic p-extensions K/Q (Theorem C). Complements, numerical illustrations and PARI programs are given in the Appendices. Published in Open Access (under CC-BY license).
DOI : 10.4064/aa240130-9-6
Mots-clés : consider real abelian fields birch tate formula linking zeta compare quadratic cyclic cubic fields infty order torsion group mathcal abelian p ramification theory given residue zeta done mathbb via genus theory p adic pseudo measures inaugurated theorem apply prove conjecture deng giving structure infty interesting family real quadratic fields theorem geq lower bound cyclic p extensions mathbb theorem complements numerical illustrations pari programs given appendices

Georges Gras 1

1 38520 Le Bourg d’Oisans, France <a href="https://orcid.org/0000-0002-1318-4414">ORCID: 0000-0002-1318-4414</a>
@article{10_4064_aa240130_9_6,
     author = {Georges Gras},
     title = {Genus theory of $p$-adic pseudo-measures, {Hilbert} kernels and abelian $p$-ramification},
     journal = {Acta Arithmetica},
     pages = {25--63},
     publisher = {mathdoc},
     volume = {218},
     number = {1},
     year = {2025},
     doi = {10.4064/aa240130-9-6},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/aa240130-9-6/}
}
TY  - JOUR
AU  - Georges Gras
TI  - Genus theory of $p$-adic pseudo-measures, Hilbert kernels and abelian $p$-ramification
JO  - Acta Arithmetica
PY  - 2025
SP  - 25
EP  - 63
VL  - 218
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/aa240130-9-6/
DO  - 10.4064/aa240130-9-6
LA  - en
ID  - 10_4064_aa240130_9_6
ER  - 
%0 Journal Article
%A Georges Gras
%T Genus theory of $p$-adic pseudo-measures, Hilbert kernels and abelian $p$-ramification
%J Acta Arithmetica
%D 2025
%P 25-63
%V 218
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/aa240130-9-6/
%R 10.4064/aa240130-9-6
%G en
%F 10_4064_aa240130_9_6
Georges Gras. Genus theory of $p$-adic pseudo-measures, Hilbert kernels and abelian $p$-ramification. Acta Arithmetica, Tome 218 (2025) no. 1, pp. 25-63. doi : 10.4064/aa240130-9-6. https://geodesic-test.mathdoc.fr/articles/10.4064/aa240130-9-6/

Cité par Sources :