Some q-supercongruences for truncated basic hypergeometric series
Acta Arithmetica, Tome 171 (2015) no. 4, pp. 309-326.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any odd prime p we obtain q-analogues of van Hamme's and Rodriguez-Villegas' supercongruences involving products of three binomial coefficients such as \begin{align*} \sum_{k=0}^{{(p-1)}/{2}} \bigg[{2k\atop k}\bigg]_{q^2}^3 \frac{q^{2k}}{(-q^2;q^2)_k^2 (-q;q)_{2k}^2} \equiv 0 \pmod{[p]^2} \ \text{for}\ p\equiv 3 \pmod 4, \\ \sum_{k=0}^{{(p-1)}/{2}}\bigg[{2k\atop k}\bigg]_{q^3}\frac{(q;q^3)_k (q^{2};q^3)_{k} q^{3k} }{ (q^{6};q^{6})_k^2 } \equiv 0 \pmod{[p]^2}\ \text{for}\ p\equiv 2 \pmod{3}, \end{align*} where [p]=1+q++qp1 and (a;q)n=(1a)(1aq)(1aqn1). We also prove q-analogues of the Sun brothers' generalizations of the above supercongruences. Our proofs are elementary in nature and use the theory of basic hypergeometric series and combinatorial q-binomial identities including a new q-Clausen type summation formula.
DOI : 10.4064/aa171-4-2
Mots-clés : odd prime obtain q analogues van hammes rodriguez villegas supercongruences involving products three binomial coefficients begin align* sum ffgrac p bigg atop bigg frac q q equiv pmod text equiv pmod sum ffgrac p bigg atop bigg frac equiv pmod text equiv pmod end align* where cdots p a aq cdots aq n prove q analogues sun brothers generalizations above supercongruences proofs elementary nature theory basic hypergeometric series combinatorial q binomial identities including q clausen type summation formula

Victor J. W. Guo 1 ; Jiang Zeng 2

1 School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223300 People's Republic of China
2 Université de Lyon Université Lyon 1 Institut Camille Jordan, UMR 5208 du CNRS 43, boulevard du 11 novembre 1918 F-69622 Villeurbanne Cedex, France
@article{10_4064_aa171_4_2,
     author = {Victor J. W. Guo and Jiang Zeng},
     title = {Some $q$-supercongruences for truncated basic hypergeometric series},
     journal = {Acta Arithmetica},
     pages = {309--326},
     publisher = {mathdoc},
     volume = {171},
     number = {4},
     year = {2015},
     doi = {10.4064/aa171-4-2},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/aa171-4-2/}
}
TY  - JOUR
AU  - Victor J. W. Guo
AU  - Jiang Zeng
TI  - Some $q$-supercongruences for truncated basic hypergeometric series
JO  - Acta Arithmetica
PY  - 2015
SP  - 309
EP  - 326
VL  - 171
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/aa171-4-2/
DO  - 10.4064/aa171-4-2
LA  - en
ID  - 10_4064_aa171_4_2
ER  - 
%0 Journal Article
%A Victor J. W. Guo
%A Jiang Zeng
%T Some $q$-supercongruences for truncated basic hypergeometric series
%J Acta Arithmetica
%D 2015
%P 309-326
%V 171
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/aa171-4-2/
%R 10.4064/aa171-4-2
%G en
%F 10_4064_aa171_4_2
Victor J. W. Guo; Jiang Zeng. Some $q$-supercongruences for truncated basic hypergeometric series. Acta Arithmetica, Tome 171 (2015) no. 4, pp. 309-326. doi : 10.4064/aa171-4-2. https://geodesic-test.mathdoc.fr/articles/10.4064/aa171-4-2/

Cité par Sources :