Large gaps between consecutive zeros of the Riemann zeta-function. II
Acta Arithmetica, Tome 165 (2014) no. 2, pp. 101-122.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.
DOI : 10.4064/aa165-2-1
Mots-clés : assuming riemann hypothesis there exist infinitely many consecutive zeros riemann zeta function whose gaps greater times average spacing

H. M. Bui 1

1 Institut für Mathematik Universität Zürich Zürich CH-8057 Switzerland and School of Mathematics University of Bristol Bristol BS8 1TW United Kingdom
@article{10_4064_aa165_2_1,
     author = {H. M. Bui},
     title = {Large gaps between consecutive zeros
 of the {Riemann} zeta-function. {II}},
     journal = {Acta Arithmetica},
     pages = {101--122},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2014},
     doi = {10.4064/aa165-2-1},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/aa165-2-1/}
}
TY  - JOUR
AU  - H. M. Bui
TI  - Large gaps between consecutive zeros
 of the Riemann zeta-function. II
JO  - Acta Arithmetica
PY  - 2014
SP  - 101
EP  - 122
VL  - 165
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/aa165-2-1/
DO  - 10.4064/aa165-2-1
LA  - en
ID  - 10_4064_aa165_2_1
ER  - 
%0 Journal Article
%A H. M. Bui
%T Large gaps between consecutive zeros
 of the Riemann zeta-function. II
%J Acta Arithmetica
%D 2014
%P 101-122
%V 165
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/aa165-2-1/
%R 10.4064/aa165-2-1
%G en
%F 10_4064_aa165_2_1
H. M. Bui. Large gaps between consecutive zeros
 of the Riemann zeta-function. II. Acta Arithmetica, Tome 165 (2014) no. 2, pp. 101-122. doi : 10.4064/aa165-2-1. https://geodesic-test.mathdoc.fr/articles/10.4064/aa165-2-1/

Cité par Sources :