Inductivity of the global root number
Acta Arithmetica, Tome 159 (2013) no. 3, pp. 245-256.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Under suitable hypotheses, we verify that the global root number of a motivic L-function is inductive (invariant under induction).
DOI : 10.4064/aa159-3-3
Mots-clés : under suitable hypotheses verify global root number motivic l function inductive invariant under induction

David E. Rohrlich 1

1 Department of Mathematics and Statistics Boston University Boston, MA 02215, U.S.A.
@article{10_4064_aa159_3_3,
     author = {David E. Rohrlich},
     title = {Inductivity of the global root number},
     journal = {Acta Arithmetica},
     pages = {245--256},
     publisher = {mathdoc},
     volume = {159},
     number = {3},
     year = {2013},
     doi = {10.4064/aa159-3-3},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.4064/aa159-3-3/}
}
TY  - JOUR
AU  - David E. Rohrlich
TI  - Inductivity of the global root number
JO  - Acta Arithmetica
PY  - 2013
SP  - 245
EP  - 256
VL  - 159
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.4064/aa159-3-3/
DO  - 10.4064/aa159-3-3
LA  - en
ID  - 10_4064_aa159_3_3
ER  - 
%0 Journal Article
%A David E. Rohrlich
%T Inductivity of the global root number
%J Acta Arithmetica
%D 2013
%P 245-256
%V 159
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.4064/aa159-3-3/
%R 10.4064/aa159-3-3
%G en
%F 10_4064_aa159_3_3
David E. Rohrlich. Inductivity of the global root number. Acta Arithmetica, Tome 159 (2013) no. 3, pp. 245-256. doi : 10.4064/aa159-3-3. https://geodesic-test.mathdoc.fr/articles/10.4064/aa159-3-3/

Cité par Sources :