Regular embeddings of cycles with multiple edges revisited
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 177-194.

Voir la notice de l'article dans Ars Mathematica Contemporanea website

Regular embeddings of cycles with multiple edges have been reappearing in the literature for quite some time, both in and outside topological graph theory. The present paper aims to draw a complete picture of these maps by providing a detailed description, classification, and enumeration of regular embeddings of cycles with multiple edges on both orientable and non-orientable surfaces. Most of the results have been known in one form or another, but here they are presented from a unique viewpoint based on finite group theory. Our approach brings additional information about both the maps and their automorphism groups, and also gives extra insight into their relationships.
DOI : 10.26493/1855-3974.626.f9d
Mots-clés : Regular embedding, multiple edge, Holder’s Theorem, Mobius map.
@article{10_26493_1855_3974_626_f9d,
     author = {Kan Hu and Roman Nedela and Martin \v{S}koviera and Naer Wang},
     title = {Regular embeddings of cycles with multiple edges revisited},
     journal = {Ars Mathematica Contemporanea},
     pages = {177--194},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.626.f9d},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.626.f9d/}
}
TY  - JOUR
AU  - Kan Hu
AU  - Roman Nedela
AU  - Martin Škoviera
AU  - Naer Wang
TI  - Regular embeddings of cycles with multiple edges revisited
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 177
EP  - 194
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.626.f9d/
DO  - 10.26493/1855-3974.626.f9d
LA  - en
ID  - 10_26493_1855_3974_626_f9d
ER  - 
%0 Journal Article
%A Kan Hu
%A Roman Nedela
%A Martin Škoviera
%A Naer Wang
%T Regular embeddings of cycles with multiple edges revisited
%J Ars Mathematica Contemporanea
%D 2015
%P 177-194
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.626.f9d/
%R 10.26493/1855-3974.626.f9d
%G en
%F 10_26493_1855_3974_626_f9d
Kan Hu; Roman Nedela; Martin Škoviera; Naer Wang. Regular embeddings of cycles with multiple edges revisited. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 177-194. doi : 10.26493/1855-3974.626.f9d. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.626.f9d/

Cité par Sources :