Regular embeddings of cycles with multiple edges revisited
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 177-194.
Voir la notice de l'article dans Ars Mathematica Contemporanea website
Regular embeddings of cycles with multiple edges have been reappearing in the literature for quite some time, both in and outside topological graph theory. The present paper aims to draw a complete picture of these maps by providing a detailed description, classification, and enumeration of regular embeddings of cycles with multiple edges on both orientable and non-orientable surfaces. Most of the results have been known in one form or another, but here they are presented from a unique viewpoint based on finite group theory. Our approach brings additional information about both the maps and their automorphism groups, and also gives extra insight into their relationships.
Mots-clés :
Regular embedding, multiple edge, Holder’s Theorem, Mobius map.
@article{10_26493_1855_3974_626_f9d, author = {Kan Hu and Roman Nedela and Martin \v{S}koviera and Naer Wang}, title = {Regular embeddings of cycles with multiple edges revisited}, journal = {Ars Mathematica Contemporanea}, pages = {177--194}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, doi = {10.26493/1855-3974.626.f9d}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.626.f9d/} }
TY - JOUR AU - Kan Hu AU - Roman Nedela AU - Martin Škoviera AU - Naer Wang TI - Regular embeddings of cycles with multiple edges revisited JO - Ars Mathematica Contemporanea PY - 2015 SP - 177 EP - 194 VL - 8 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.626.f9d/ DO - 10.26493/1855-3974.626.f9d LA - en ID - 10_26493_1855_3974_626_f9d ER -
%0 Journal Article %A Kan Hu %A Roman Nedela %A Martin Škoviera %A Naer Wang %T Regular embeddings of cycles with multiple edges revisited %J Ars Mathematica Contemporanea %D 2015 %P 177-194 %V 8 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.626.f9d/ %R 10.26493/1855-3974.626.f9d %G en %F 10_26493_1855_3974_626_f9d
Kan Hu; Roman Nedela; Martin Škoviera; Naer Wang. Regular embeddings of cycles with multiple edges revisited. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 177-194. doi : 10.26493/1855-3974.626.f9d. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.626.f9d/
Cité par Sources :