Tight orientably-regular polytopes
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 69-82.

Voir la notice de l'article dans Ars Mathematica Contemporanea website

It is known that every equivelar abstract polytope of type {p1, …, pn − 1} has at least 2p1⋯pn − 1 flags. Polytopes that attain this lower bound are called tight. Here we investigate the conditions under which there is a tight orientably-regular polytope of type {p1, …, pn − 1}. We show that it is necessary and sufficient that whenever pi is odd, both pi − 1 and pi + 1 (when defined) are even divisors of 2pi.
DOI : 10.26493/1855-3974.554.e50
Mots-clés : Abstract regular polytope, equivelar polytope, flat polytope, tight polytope
@article{10_26493_1855_3974_554_e50,
     author = {Marston D. E. Conder and Gabe Cunningham},
     title = {Tight orientably-regular polytopes},
     journal = {Ars Mathematica Contemporanea},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.554.e50},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.554.e50/}
}
TY  - JOUR
AU  - Marston D. E. Conder
AU  - Gabe Cunningham
TI  - Tight orientably-regular polytopes
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 69
EP  - 82
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.554.e50/
DO  - 10.26493/1855-3974.554.e50
LA  - en
ID  - 10_26493_1855_3974_554_e50
ER  - 
%0 Journal Article
%A Marston D. E. Conder
%A Gabe Cunningham
%T Tight orientably-regular polytopes
%J Ars Mathematica Contemporanea
%D 2015
%P 69-82
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.554.e50/
%R 10.26493/1855-3974.554.e50
%G en
%F 10_26493_1855_3974_554_e50
Marston D. E. Conder; Gabe Cunningham. Tight orientably-regular polytopes. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 69-82. doi : 10.26493/1855-3974.554.e50. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.554.e50/

Cité par Sources :