Tight orientably-regular polytopes
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 69-82.
Voir la notice de l'article dans Ars Mathematica Contemporanea website
It is known that every equivelar abstract polytope of type {p1, …, pn − 1} has at least 2p1⋯pn − 1 flags. Polytopes that attain this lower bound are called tight. Here we investigate the conditions under which there is a tight orientably-regular polytope of type {p1, …, pn − 1}. We show that it is necessary and sufficient that whenever pi is odd, both pi − 1 and pi + 1 (when defined) are even divisors of 2pi.
Mots-clés :
Abstract regular polytope, equivelar polytope, flat polytope, tight polytope
@article{10_26493_1855_3974_554_e50, author = {Marston D. E. Conder and Gabe Cunningham}, title = {Tight orientably-regular polytopes}, journal = {Ars Mathematica Contemporanea}, pages = {69--82}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, doi = {10.26493/1855-3974.554.e50}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.554.e50/} }
TY - JOUR AU - Marston D. E. Conder AU - Gabe Cunningham TI - Tight orientably-regular polytopes JO - Ars Mathematica Contemporanea PY - 2015 SP - 69 EP - 82 VL - 8 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.554.e50/ DO - 10.26493/1855-3974.554.e50 LA - en ID - 10_26493_1855_3974_554_e50 ER -
%0 Journal Article %A Marston D. E. Conder %A Gabe Cunningham %T Tight orientably-regular polytopes %J Ars Mathematica Contemporanea %D 2015 %P 69-82 %V 8 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.554.e50/ %R 10.26493/1855-3974.554.e50 %G en %F 10_26493_1855_3974_554_e50
Marston D. E. Conder; Gabe Cunningham. Tight orientably-regular polytopes. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 69-82. doi : 10.26493/1855-3974.554.e50. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.554.e50/
Cité par Sources :