Strongly regular m-Cayley circulant graphs and digraphs
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 195-213.
Voir la notice de l'article dans Ars Mathematica Contemporanea website
The first part of this paper is a survey about strongly regular graphs and digraphs admitting a semiregular cyclic group of automorphisms. In the second part, some new types of such digraphs, called uniform and almost uniform, are studied. By using partial sum families, the form of the parameters is determined and some directed strongly regular graphs derived from these partial sum families with previously unknown parameters are obtained.
Mots-clés :
m-Cayley, circulant, strongly regular graphs, strongly regular digraphs, uniform partial sum families, almost-uniform partial sum families.
@article{10_26493_1855_3974_540_002, author = {Luis Mart{\'\i}nez Fern\'andez}, title = {Strongly regular {m-Cayley} circulant graphs and digraphs}, journal = {Ars Mathematica Contemporanea}, pages = {195--213}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, doi = {10.26493/1855-3974.540.002}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.540.002/} }
TY - JOUR AU - Luis Martínez Fernández TI - Strongly regular m-Cayley circulant graphs and digraphs JO - Ars Mathematica Contemporanea PY - 2015 SP - 195 EP - 213 VL - 8 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.540.002/ DO - 10.26493/1855-3974.540.002 LA - en ID - 10_26493_1855_3974_540_002 ER -
%0 Journal Article %A Luis Martínez Fernández %T Strongly regular m-Cayley circulant graphs and digraphs %J Ars Mathematica Contemporanea %D 2015 %P 195-213 %V 8 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.540.002/ %R 10.26493/1855-3974.540.002 %G en %F 10_26493_1855_3974_540_002
Luis Martínez Fernández. Strongly regular m-Cayley circulant graphs and digraphs. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 195-213. doi : 10.26493/1855-3974.540.002. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.540.002/
Cité par Sources :