The clone cover
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 95-113.

Voir la notice de l'article dans Ars Mathematica Contemporanea website

Each finite graph on n vertices determines a special (n − 1)-fold covering graph that we call the clone cover. Several equivalent definitions and basic properties about this remarkable construction are presented. In particular, we show that for k ≥ 2, the clone cover of a k-connected graph is k-connected, the clone cover of a planar graph is planar and the clone cover of a hamiltonian graph is hamiltonian. As for symmetry properties, in most cases we also understand the structure of the automorphism groups of these covers. A particularly nice property is that every automorphism of the base graph lifts to an automorphism of its clone cover. We also show that the covering projection from the clone cover onto its corresponding 2-connected base graph is never a regular covering, except when the base graph is a cycle.
DOI : 10.26493/1855-3974.513.cbb
Mots-clés : Covering projection, canonical cover, regular cover, automorphisms
@article{10_26493_1855_3974_513_cbb,
     author = {Aleksander Malni\v{c} and Toma\v{z} Pisanski and Arjana \v{Z}itnik},
     title = {The clone cover},
     journal = {Ars Mathematica Contemporanea},
     pages = {95--113},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.513.cbb},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.513.cbb/}
}
TY  - JOUR
AU  - Aleksander Malnič
AU  - Tomaž Pisanski
AU  - Arjana Žitnik
TI  - The clone cover
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 95
EP  - 113
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.513.cbb/
DO  - 10.26493/1855-3974.513.cbb
LA  - en
ID  - 10_26493_1855_3974_513_cbb
ER  - 
%0 Journal Article
%A Aleksander Malnič
%A Tomaž Pisanski
%A Arjana Žitnik
%T The clone cover
%J Ars Mathematica Contemporanea
%D 2015
%P 95-113
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.513.cbb/
%R 10.26493/1855-3974.513.cbb
%G en
%F 10_26493_1855_3974_513_cbb
Aleksander Malnič; Tomaž Pisanski; Arjana Žitnik. The clone cover. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 95-113. doi : 10.26493/1855-3974.513.cbb. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.513.cbb/

Cité par Sources :