Hamilton paths in Cayley graphs on Coxeter groups: I
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 35-53.

Voir la notice de l'article dans Ars Mathematica Contemporanea website

We consider several families of Cayley graphs on the finite Coxeter groups An, Bn,  and Dn with regard to the problem of whether they are Hamilton-laceable or Hamilton-connected. It is known that every connected bipartite Cayley graph on An, n ≥ 2, whose connection set contains only transpositions and has valency at least three is Hamilton-laceable. We obtain analogous results for connected bipartite Cayley graphs on Bn, and for connected Cayley graphs on Dn. Non-bipartite examples arise for the latter family.
DOI : 10.26493/1855-3974.509.d9d
Mots-clés : Hamilton path, Cayley graph, Coxeter group, Hamilton-connected, Hamilton-laceable
@article{10_26493_1855_3974_509_d9d,
     author = {Brian Alspach},
     title = {Hamilton paths in {Cayley} graphs on {Coxeter} groups: {I}},
     journal = {Ars Mathematica Contemporanea},
     pages = {35--53},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.509.d9d},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.509.d9d/}
}
TY  - JOUR
AU  - Brian Alspach
TI  - Hamilton paths in Cayley graphs on Coxeter groups: I
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 35
EP  - 53
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.509.d9d/
DO  - 10.26493/1855-3974.509.d9d
LA  - en
ID  - 10_26493_1855_3974_509_d9d
ER  - 
%0 Journal Article
%A Brian Alspach
%T Hamilton paths in Cayley graphs on Coxeter groups: I
%J Ars Mathematica Contemporanea
%D 2015
%P 35-53
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.509.d9d/
%R 10.26493/1855-3974.509.d9d
%G en
%F 10_26493_1855_3974_509_d9d
Brian Alspach. Hamilton paths in Cayley graphs on Coxeter groups: I. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 35-53. doi : 10.26493/1855-3974.509.d9d. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.509.d9d/

Cité par Sources :