Arc-transitive graphs of valency 8 have a semiregular automorphism
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 29-34.
Voir la notice de l'article dans Ars Mathematica Contemporanea website
One version of the polycirculant conjecture states that every vertex-transitive graph has a non-identity semiregular automorphism that is, a non-identity automorphism whose cycles all have the same length. We give a proof of the conjecture in the arc-transitive case for graphs of valency 8, which was the smallest open valency.
Mots-clés :
Arc-transitive graphs, polycirculant conjecture, semiregular automorphism
@article{10_26493_1855_3974_492_37d, author = {Gabriel Verret}, title = {Arc-transitive graphs of valency 8 have a semiregular automorphism}, journal = {Ars Mathematica Contemporanea}, pages = {29--34}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, doi = {10.26493/1855-3974.492.37d}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.492.37d/} }
TY - JOUR AU - Gabriel Verret TI - Arc-transitive graphs of valency 8 have a semiregular automorphism JO - Ars Mathematica Contemporanea PY - 2015 SP - 29 EP - 34 VL - 8 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.492.37d/ DO - 10.26493/1855-3974.492.37d LA - en ID - 10_26493_1855_3974_492_37d ER -
%0 Journal Article %A Gabriel Verret %T Arc-transitive graphs of valency 8 have a semiregular automorphism %J Ars Mathematica Contemporanea %D 2015 %P 29-34 %V 8 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.492.37d/ %R 10.26493/1855-3974.492.37d %G en %F 10_26493_1855_3974_492_37d
Gabriel Verret. Arc-transitive graphs of valency 8 have a semiregular automorphism. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 29-34. doi : 10.26493/1855-3974.492.37d. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.492.37d/
Cité par Sources :