Arc-transitive graphs of valency 8 have a semiregular automorphism
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 29-34.

Voir la notice de l'article dans Ars Mathematica Contemporanea website

One version of the polycirculant conjecture states that every vertex-transitive graph has a non-identity semiregular automorphism that is, a non-identity automorphism whose cycles all have the same length.  We give a proof of the conjecture in the arc-transitive case for graphs of valency 8, which was the smallest open valency.
DOI : 10.26493/1855-3974.492.37d
Mots-clés : Arc-transitive graphs, polycirculant conjecture, semiregular automorphism
@article{10_26493_1855_3974_492_37d,
     author = {Gabriel Verret},
     title = {Arc-transitive graphs of valency 8 have a semiregular automorphism},
     journal = {Ars Mathematica Contemporanea},
     pages = {29--34},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.492.37d},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.492.37d/}
}
TY  - JOUR
AU  - Gabriel Verret
TI  - Arc-transitive graphs of valency 8 have a semiregular automorphism
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 29
EP  - 34
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.492.37d/
DO  - 10.26493/1855-3974.492.37d
LA  - en
ID  - 10_26493_1855_3974_492_37d
ER  - 
%0 Journal Article
%A Gabriel Verret
%T Arc-transitive graphs of valency 8 have a semiregular automorphism
%J Ars Mathematica Contemporanea
%D 2015
%P 29-34
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.492.37d/
%R 10.26493/1855-3974.492.37d
%G en
%F 10_26493_1855_3974_492_37d
Gabriel Verret. Arc-transitive graphs of valency 8 have a semiregular automorphism. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 29-34. doi : 10.26493/1855-3974.492.37d. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.492.37d/

Cité par Sources :