Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 1-28.
Voir la notice de l'article dans Ars Mathematica Contemporanea website
We show that if G is a nontrivial, finite group of odd order, whose commutator subgroup [G, G] is cyclic of order pμqν, where p and q are prime, then every connected Cayley graph on G has a hamiltonian cycle.
@article{10_26493_1855_3974_330_0e6, author = {Dave Witte Morris}, title = {Odd-order {Cayley} graphs with commutator subgroup of order pq are hamiltonian}, journal = {Ars Mathematica Contemporanea}, pages = {1--28}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, doi = {10.26493/1855-3974.330.0e6}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.330.0e6/} }
TY - JOUR AU - Dave Witte Morris TI - Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian JO - Ars Mathematica Contemporanea PY - 2015 SP - 1 EP - 28 VL - 8 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.330.0e6/ DO - 10.26493/1855-3974.330.0e6 LA - en ID - 10_26493_1855_3974_330_0e6 ER -
%0 Journal Article %A Dave Witte Morris %T Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian %J Ars Mathematica Contemporanea %D 2015 %P 1-28 %V 8 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.330.0e6/ %R 10.26493/1855-3974.330.0e6 %G en %F 10_26493_1855_3974_330_0e6
Dave Witte Morris. Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 1-28. doi : 10.26493/1855-3974.330.0e6. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.330.0e6/
Cité par Sources :