Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian
Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 1-28.

Voir la notice de l'article dans Ars Mathematica Contemporanea website

We show that if G is a nontrivial, finite group of odd order, whose commutator subgroup [G, G] is cyclic of order pμqν, where p and q are prime, then every connected Cayley graph on G has a hamiltonian cycle.
DOI : 10.26493/1855-3974.330.0e6
Mots-clés : Cayley graph, hamiltonian cycle, commutator subgroup
@article{10_26493_1855_3974_330_0e6,
     author = {Dave Witte Morris},
     title = {Odd-order {Cayley} graphs with commutator subgroup of order pq are hamiltonian},
     journal = {Ars Mathematica Contemporanea},
     pages = {1--28},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.330.0e6},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.330.0e6/}
}
TY  - JOUR
AU  - Dave Witte Morris
TI  - Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 1
EP  - 28
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.330.0e6/
DO  - 10.26493/1855-3974.330.0e6
LA  - en
ID  - 10_26493_1855_3974_330_0e6
ER  - 
%0 Journal Article
%A Dave Witte Morris
%T Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian
%J Ars Mathematica Contemporanea
%D 2015
%P 1-28
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.330.0e6/
%R 10.26493/1855-3974.330.0e6
%G en
%F 10_26493_1855_3974_330_0e6
Dave Witte Morris. Odd-order Cayley graphs with commutator subgroup of order pq are hamiltonian. Ars Mathematica Contemporanea, Tome 8 (2015) no. 1, pp. 1-28. doi : 10.26493/1855-3974.330.0e6. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.330.0e6/

Cité par Sources :