Grundy domination and zero forcing in Kneser graphs
Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 419-430.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this paper, we continue the investigation of different types of (Grundy) dominating sequences. We consider four different types of Grundy domination numbers and the related zero forcing numbers, focusing on these numbers in the well-known class of Kneser graphs Kn, r. In particular, we establish that the Grundy total domination number γgrt(Kn, r) equals (2r choose r) for any r ≥ 2 and n ≥ 2r + 1. For the Grundy domination number of Kneser graphs we get γgr(Kn, r) = α(Kn, r) whenever n is sufficiently larger than r. On the other hand, the zero forcing number Z(Kn, r) is proved to be (n choose r) − (2r choose r) when n ≥ 3r + 1 and r ≥ 2, while lower and upper bounds are provided for Z(Kn, r) when 2r + 1 ≤ n ≤ 3r. Some lower bounds for different types of minimum ranks of Kneser graphs are also obtained along the way.
DOI : 10.26493/1855-3974.1881.384
Mots-clés : Grundy domination number, Grundy total domination number, Kneser graph, zero forcing number, minimum rank
@article{10_26493_1855_3974_1881_384,
     author = {Bo\v{s}tjan Bre\v{s}ar and Tim Kos and Pablo Daniel Torres},
     title = {Grundy domination and zero forcing in {Kneser} graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {419--430},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1881.384},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.1881.384/}
}
TY  - JOUR
AU  - Boštjan Brešar
AU  - Tim Kos
AU  - Pablo Daniel Torres
TI  - Grundy domination and zero forcing in Kneser graphs
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 419
EP  - 430
VL  - 17
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.1881.384/
DO  - 10.26493/1855-3974.1881.384
LA  - en
ID  - 10_26493_1855_3974_1881_384
ER  - 
%0 Journal Article
%A Boštjan Brešar
%A Tim Kos
%A Pablo Daniel Torres
%T Grundy domination and zero forcing in Kneser graphs
%J Ars Mathematica Contemporanea
%D 2019
%P 419-430
%V 17
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.1881.384/
%R 10.26493/1855-3974.1881.384
%G en
%F 10_26493_1855_3974_1881_384
Boštjan Brešar; Tim Kos; Pablo Daniel Torres. Grundy domination and zero forcing in Kneser graphs. Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 419-430. doi : 10.26493/1855-3974.1881.384. https://geodesic-test.mathdoc.fr/articles/10.26493/1855-3974.1881.384/

Cité par Sources :