Explicit computations of all finite index bimodules for a family of II1 factors
[Calculs explicites de tous les bimodules d’indice infini d’une famille de facteurs de type II1]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 5, pp. 743-788.

Voir la notice de l'article dans Numdam

Nous étudions des facteurs M et N de type II1 associés à de bonnes actions Bernoulli généralisées de groupes Γ et Λ ayant un sous-groupe infini presque-distingué avec la propriété (T) relative. Nous démontrons le résultat de rigidité suivant  : chaque M-N-bimodule d’indice fini (en particulier, chaque isomorphisme entre M et N) peut être décrit par une commensurabilité des groupes Γ, Λ et une commensurabilité de leurs actions. L’algèbre de fusion des M-M-bimodules d’indice fini est identifiée avec une algèbre de Hecke étendue, ce qui fournit les premiers calculs explicites de l’algèbre de fusion d’un facteur de type II1. Nous obtenons en particulier des exemples explicites de facteurs II1 dont l’algèbre de fusion est triviale, ce qui veut dire que tous leurs sous-facteurs d’indice fini sont triviaux.

We study II1 factors M and N associated with good generalized Bernoulli actions of groups having an infinite almost normal subgroup with the relative property (T). We prove the following rigidity result : every finite index M-N-bimodule (in particular, every isomorphism between M and N) is described by a commensurability of the groups involved and a commensurability of their actions. The fusion algebra of finite index M-M-bimodules is identified with an extended Hecke fusion algebra, providing the first explicit computations of the fusion algebra of a II1 factor. We obtain in particular explicit examples of II1 factors with trivial fusion algebra, i.e. only having trivial finite index subfactors.

@article{ASENS_2008_4_41_5_743_0,
     author = {Vaes, Stefaan},
     title = {Explicit computations of all finite index bimodules for a family of {II}$_1$ factors},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {743--788},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 41},
     number = {5},
     year = {2008},
     doi = {10.24033/asens.2081},
     zbl = {1194.46086},
     mrnumber = {2504433},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.24033/asens.2081/}
}
TY  - JOUR
AU  - Vaes, Stefaan
TI  - Explicit computations of all finite index bimodules for a family of II$_1$ factors
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2008
SP  - 743
EP  - 788
VL  - 41
IS  - 5
PB  - Société mathématique de France
UR  - https://geodesic-test.mathdoc.fr/articles/10.24033/asens.2081/
DO  - 10.24033/asens.2081
LA  - en
ID  - ASENS_2008_4_41_5_743_0
ER  - 
%0 Journal Article
%A Vaes, Stefaan
%T Explicit computations of all finite index bimodules for a family of II$_1$ factors
%J Annales scientifiques de l'École Normale Supérieure
%D 2008
%P 743-788
%V 41
%N 5
%I Société mathématique de France
%U https://geodesic-test.mathdoc.fr/articles/10.24033/asens.2081/
%R 10.24033/asens.2081
%G en
%F ASENS_2008_4_41_5_743_0
Vaes, Stefaan. Explicit computations of all finite index bimodules for a family of II$_1$ factors. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 5, pp. 743-788. doi : 10.24033/asens.2081. https://geodesic-test.mathdoc.fr/articles/10.24033/asens.2081/

Cité par Sources :