Variants of Karamata's Iteration Theorem
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 241 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Karamata's Iteration Theorem is used to refine the asymptotic behavior of iterates of a function, under a more restrictive assumption than Karamata's, but still involving regular variation. A second result gives a necessary and sufficient integral condition for convergence of a series of iterates. Historical background to the idea of regularly varying sequence precedes a short concluding section on attribution of a probabilistic result.
DOI : 10.2298/PIM0694241S
Classification : 26A12 40A05 40-03 01A55 01A60
Mots-clés : iterates, series, convergence, regularly varying sequence, Cauchy integral test, De Morgan, Buniakovsky, domain of attraction, Gnedenko
@article{10_2298_PIM0694241S,
     author = {Eugene Seneta},
     title = {Variants of {Karamata's} {Iteration} {Theorem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {241 },
     publisher = {mathdoc},
     volume = {_N_S_80},
     number = {94},
     year = {2006},
     doi = {10.2298/PIM0694241S},
     zbl = {1246.26004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0694241S/}
}
TY  - JOUR
AU  - Eugene Seneta
TI  - Variants of Karamata's Iteration Theorem
JO  - Publications de l'Institut Mathématique
PY  - 2006
SP  - 241 
VL  - _N_S_80
IS  - 94
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0694241S/
DO  - 10.2298/PIM0694241S
LA  - en
ID  - 10_2298_PIM0694241S
ER  - 
%0 Journal Article
%A Eugene Seneta
%T Variants of Karamata's Iteration Theorem
%J Publications de l'Institut Mathématique
%D 2006
%P 241 
%V _N_S_80
%N 94
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0694241S/
%R 10.2298/PIM0694241S
%G en
%F 10_2298_PIM0694241S
Eugene Seneta. Variants of Karamata's Iteration Theorem. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 241 . doi : 10.2298/PIM0694241S. https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0694241S/

Cité par Sources :