Minimum segments in sequent derivations.
Publications de l 'Institut Mathématique. Nouvelle Série, 74(88) (2003), p. 5.
Voir la notice de l'article dans European Digital Mathematics Library
DOI :
10.2298/PIM0374005B
Mots-clés :
sequent systems, natural deduction, maximum cuts, normal derivation, path of a formula
@article{10_2298_PIM0374005B, author = {Borisavljevi\'c, Mirjana}, title = {Minimum segments in sequent derivations.}, journal = {Publications de l 'Institut Math\'ematique. Nouvelle S\'erie}, pages = {5}, publisher = {mathdoc}, volume = {74(88)}, year = {2003}, doi = {10.2298/PIM0374005B}, zbl = {1076.03037}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0374005B/} }
TY - JOUR AU - Borisavljević, Mirjana TI - Minimum segments in sequent derivations. JO - Publications de l 'Institut Mathématique. Nouvelle Série PY - 2003 SP - 5 VL - 74(88) PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0374005B/ DO - 10.2298/PIM0374005B LA - en ID - 10_2298_PIM0374005B ER -
%0 Journal Article %A Borisavljević, Mirjana %T Minimum segments in sequent derivations. %J Publications de l 'Institut Mathématique. Nouvelle Série %D 2003 %P 5 %V 74(88) %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0374005B/ %R 10.2298/PIM0374005B %G en %F 10_2298_PIM0374005B
Borisavljević, Mirjana. Minimum segments in sequent derivations.. Publications de l 'Institut Mathématique. Nouvelle Série, 74(88) (2003), p. 5. doi : 10.2298/PIM0374005B. https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0374005B/
Cité par Sources :