Minimum segments in sequent derivations.
Publications de l 'Institut Mathématique. Nouvelle Série, 74(88) (2003), p. 5.

Voir la notice de l'article dans European Digital Mathematics Library

DOI : 10.2298/PIM0374005B
Mots-clés : sequent systems, natural deduction, maximum cuts, normal derivation, path of a formula
@article{10_2298_PIM0374005B,
     author = {Borisavljevi\'c, Mirjana},
     title = {Minimum segments in sequent derivations.},
     journal = {Publications de l 'Institut Math\'ematique. Nouvelle S\'erie},
     pages = {5},
     publisher = {mathdoc},
     volume = {74(88)},
     year = {2003},
     doi = {10.2298/PIM0374005B},
     zbl = {1076.03037},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0374005B/}
}
TY  - JOUR
AU  - Borisavljević, Mirjana
TI  - Minimum segments in sequent derivations.
JO  - Publications de l 'Institut Mathématique. Nouvelle Série
PY  - 2003
SP  - 5
VL  - 74(88)
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0374005B/
DO  - 10.2298/PIM0374005B
LA  - en
ID  - 10_2298_PIM0374005B
ER  - 
%0 Journal Article
%A Borisavljević, Mirjana
%T Minimum segments in sequent derivations.
%J Publications de l 'Institut Mathématique. Nouvelle Série
%D 2003
%P 5
%V 74(88)
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0374005B/
%R 10.2298/PIM0374005B
%G en
%F 10_2298_PIM0374005B
Borisavljević, Mirjana. Minimum segments in sequent derivations.. Publications de l 'Institut Mathématique. Nouvelle Série, 74(88) (2003), p. 5. doi : 10.2298/PIM0374005B. https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0374005B/

Cité par Sources :