Regular variation and the functional central limit theorem for heavy tailed random vectors.
Publications de l 'Institut Mathématique. Nouvelle Série, 71(85) (2002), p. 55.

Voir la notice de l'article dans European Digital Mathematics Library

DOI : 10.2298/PIM0271055M
Mots-clés : martingale, invariance principle, Donsker's theorem, partial sum process, generalized domain of attraction, operator normalization
@article{10_2298_PIM0271055M,
     author = {Meeschaert, Mark M. and Sepanski, Steven J.},
     title = {Regular variation and the functional central limit theorem for heavy tailed random vectors.},
     journal = {Publications de l 'Institut Math\'ematique. Nouvelle S\'erie},
     pages = {55},
     publisher = {mathdoc},
     volume = {71(85)},
     year = {2002},
     doi = {10.2298/PIM0271055M},
     zbl = {1029.60019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0271055M/}
}
TY  - JOUR
AU  - Meeschaert, Mark M.
AU  - Sepanski, Steven J.
TI  - Regular variation and the functional central limit theorem for heavy tailed random vectors.
JO  - Publications de l 'Institut Mathématique. Nouvelle Série
PY  - 2002
SP  - 55
VL  - 71(85)
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0271055M/
DO  - 10.2298/PIM0271055M
LA  - en
ID  - 10_2298_PIM0271055M
ER  - 
%0 Journal Article
%A Meeschaert, Mark M.
%A Sepanski, Steven J.
%T Regular variation and the functional central limit theorem for heavy tailed random vectors.
%J Publications de l 'Institut Mathématique. Nouvelle Série
%D 2002
%P 55
%V 71(85)
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0271055M/
%R 10.2298/PIM0271055M
%G en
%F 10_2298_PIM0271055M
Meeschaert, Mark M.; Sepanski, Steven J. Regular variation and the functional central limit theorem for heavy tailed random vectors.. Publications de l 'Institut Mathématique. Nouvelle Série, 71(85) (2002), p. 55. doi : 10.2298/PIM0271055M. https://geodesic-test.mathdoc.fr/articles/10.2298/PIM0271055M/

Cité par Sources :