On a certain class of arithmetic functions
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 21-25.
Voir la notice de l'article dans Czech Digital Mathematics Library
A homothetic arithmetic function of ratio $K$ is a function $f\colon \mathbb {N}\rightarrow R$ such that $f(Kn)=f(n)$ for every $n\in \mathbb {N}$. Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of $f(\mathbb {N})$ in terms of the period and the ratio of $f$.
DOI :
10.21136/MB.2017.0071-14
Classification :
11A25, 11B99, 11N37
Mots-clés : arithmetic function; periodic function; homothetic function
Mots-clés : arithmetic function; periodic function; homothetic function
@article{10_21136_MB_2017_0071_14, author = {Oller-Marc\'en, Antonio M.}, title = {On a certain class of arithmetic functions}, journal = {Mathematica Bohemica}, pages = {21--25}, publisher = {mathdoc}, volume = {142}, number = {1}, year = {2017}, doi = {10.21136/MB.2017.0071-14}, mrnumber = {3619984}, zbl = {06738567}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0071-14/} }
TY - JOUR AU - Oller-Marcén, Antonio M. TI - On a certain class of arithmetic functions JO - Mathematica Bohemica PY - 2017 SP - 21 EP - 25 VL - 142 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0071-14/ DO - 10.21136/MB.2017.0071-14 LA - en ID - 10_21136_MB_2017_0071_14 ER -
Oller-Marcén, Antonio M. On a certain class of arithmetic functions. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 21-25. doi : 10.21136/MB.2017.0071-14. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0071-14/
Cité par Sources :