Practical Ulam-Hyers-Rassias stability for nonlinear equations
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 47-56.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results.
DOI :
10.21136/MB.2017.0058-14
Classification :
39B82, 46T20, 47H10, 47H99, 47J05
Mots-clés : practical Ulam-Hyers-Rassias stability; nonlinear equation
Mots-clés : practical Ulam-Hyers-Rassias stability; nonlinear equation
@article{10_21136_MB_2017_0058_14, author = {Wang, Jin Rong and Fe\v{c}kan, Michal}, title = {Practical {Ulam-Hyers-Rassias} stability for nonlinear equations}, journal = {Mathematica Bohemica}, pages = {47--56}, publisher = {mathdoc}, volume = {142}, number = {1}, year = {2017}, doi = {10.21136/MB.2017.0058-14}, mrnumber = {3619986}, zbl = {06738569}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0058-14/} }
TY - JOUR AU - Wang, Jin Rong AU - Fečkan, Michal TI - Practical Ulam-Hyers-Rassias stability for nonlinear equations JO - Mathematica Bohemica PY - 2017 SP - 47 EP - 56 VL - 142 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0058-14/ DO - 10.21136/MB.2017.0058-14 LA - en ID - 10_21136_MB_2017_0058_14 ER -
%0 Journal Article %A Wang, Jin Rong %A Fečkan, Michal %T Practical Ulam-Hyers-Rassias stability for nonlinear equations %J Mathematica Bohemica %D 2017 %P 47-56 %V 142 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0058-14/ %R 10.21136/MB.2017.0058-14 %G en %F 10_21136_MB_2017_0058_14
Wang, Jin Rong; Fečkan, Michal. Practical Ulam-Hyers-Rassias stability for nonlinear equations. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 47-56. doi : 10.21136/MB.2017.0058-14. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0058-14/
Cité par Sources :