Duality for Hilbert algebras with supremum: An application
Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 263-276.
Voir la notice de l'article dans Czech Digital Mathematics Library
We modify slightly the definition of $H$-partial functions given by Celani and Montangie (2012); these partial functions are the morphisms in the category of $H^\vee $-space and this category is the dual category of the category with objects the Hilbert algebras with supremum and morphisms, the algebraic homomorphisms. As an application we show that finite pure Hilbert algebras with supremum are determined by the monoid of their endomorphisms.
DOI :
10.21136/MB.2017.0056-15
Classification :
03G25, 06A12
Mots-clés : Hilbert algebra; duality; monoid of endomorphisms; BCK-algebra
Mots-clés : Hilbert algebra; duality; monoid of endomorphisms; BCK-algebra
@article{10_21136_MB_2017_0056_15, author = {Gait\'an, Hernando}, title = {Duality for {Hilbert} algebras with supremum: {An} application}, journal = {Mathematica Bohemica}, pages = {263--276}, publisher = {mathdoc}, volume = {142}, number = {3}, year = {2017}, doi = {10.21136/MB.2017.0056-15}, mrnumber = {3695466}, zbl = {06770145}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0056-15/} }
TY - JOUR AU - Gaitán, Hernando TI - Duality for Hilbert algebras with supremum: An application JO - Mathematica Bohemica PY - 2017 SP - 263 EP - 276 VL - 142 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0056-15/ DO - 10.21136/MB.2017.0056-15 LA - en ID - 10_21136_MB_2017_0056_15 ER -
Gaitán, Hernando. Duality for Hilbert algebras with supremum: An application. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 263-276. doi : 10.21136/MB.2017.0056-15. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0056-15/
Cité par Sources :