Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems
Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 243-262.

Voir la notice de l'article dans Czech Digital Mathematics Library

We consider the following quasilinear Neumann boundary-value problem of the type $$ \begin {cases} -\displaystyle \sum _{i=1}^{N}\frac {\partial }{\partial x_{i}}a_{i}\Big (x,\frac {\partial u}{\partial x_{i}}\Big ) + b(x)|u|^{p_{0}(x)-2}u = f(x,u)+ g(x,u) \text {in} \ \Omega , \\ \quad \dfrac {\partial u}{\partial \gamma } = 0 \text {on} \ \partial \Omega . \end {cases} $$ We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev spaces and we give some examples.
DOI : 10.21136/MB.2017.0037-15
Classification : 35D30, 35J20, 35J25, 35J62
Mots-clés : Neumann problem; quasilinear elliptic equation; weak solution; variational principle; anisotropic variable exponent Sobolev space
@article{10_21136_MB_2017_0037_15,
     author = {Ahmed, Ahmed and Ahmedatt, Taghi and Hjiaj, Hassane and Touzani, Abdelfattah},
     title = {Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic {Neumann} problems},
     journal = {Mathematica Bohemica},
     pages = {243--262},
     publisher = {mathdoc},
     volume = {142},
     number = {3},
     year = {2017},
     doi = {10.21136/MB.2017.0037-15},
     mrnumber = {3695465},
     zbl = {06770144},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0037-15/}
}
TY  - JOUR
AU  - Ahmed, Ahmed
AU  - Ahmedatt, Taghi
AU  - Hjiaj, Hassane
AU  - Touzani, Abdelfattah
TI  - Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems
JO  - Mathematica Bohemica
PY  - 2017
SP  - 243
EP  - 262
VL  - 142
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0037-15/
DO  - 10.21136/MB.2017.0037-15
LA  - en
ID  - 10_21136_MB_2017_0037_15
ER  - 
%0 Journal Article
%A Ahmed, Ahmed
%A Ahmedatt, Taghi
%A Hjiaj, Hassane
%A Touzani, Abdelfattah
%T Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems
%J Mathematica Bohemica
%D 2017
%P 243-262
%V 142
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0037-15/
%R 10.21136/MB.2017.0037-15
%G en
%F 10_21136_MB_2017_0037_15
Ahmed, Ahmed; Ahmedatt, Taghi; Hjiaj, Hassane; Touzani, Abdelfattah. Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 243-262. doi : 10.21136/MB.2017.0037-15. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0037-15/

Cité par Sources :