Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems
Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 243-262.
Voir la notice de l'article dans Czech Digital Mathematics Library
We consider the following quasilinear Neumann boundary-value problem of the type $$ \begin {cases} -\displaystyle \sum _{i=1}^{N}\frac {\partial }{\partial x_{i}}a_{i}\Big (x,\frac {\partial u}{\partial x_{i}}\Big ) + b(x)|u|^{p_{0}(x)-2}u = f(x,u)+ g(x,u) \text {in} \ \Omega , \\ \quad \dfrac {\partial u}{\partial \gamma } = 0 \text {on} \ \partial \Omega . \end {cases} $$ We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev spaces and we give some examples.
DOI :
10.21136/MB.2017.0037-15
Classification :
35D30, 35J20, 35J25, 35J62
Mots-clés : Neumann problem; quasilinear elliptic equation; weak solution; variational principle; anisotropic variable exponent Sobolev space
Mots-clés : Neumann problem; quasilinear elliptic equation; weak solution; variational principle; anisotropic variable exponent Sobolev space
@article{10_21136_MB_2017_0037_15, author = {Ahmed, Ahmed and Ahmedatt, Taghi and Hjiaj, Hassane and Touzani, Abdelfattah}, title = {Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic {Neumann} problems}, journal = {Mathematica Bohemica}, pages = {243--262}, publisher = {mathdoc}, volume = {142}, number = {3}, year = {2017}, doi = {10.21136/MB.2017.0037-15}, mrnumber = {3695465}, zbl = {06770144}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0037-15/} }
TY - JOUR AU - Ahmed, Ahmed AU - Ahmedatt, Taghi AU - Hjiaj, Hassane AU - Touzani, Abdelfattah TI - Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems JO - Mathematica Bohemica PY - 2017 SP - 243 EP - 262 VL - 142 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0037-15/ DO - 10.21136/MB.2017.0037-15 LA - en ID - 10_21136_MB_2017_0037_15 ER -
%0 Journal Article %A Ahmed, Ahmed %A Ahmedatt, Taghi %A Hjiaj, Hassane %A Touzani, Abdelfattah %T Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems %J Mathematica Bohemica %D 2017 %P 243-262 %V 142 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0037-15/ %R 10.21136/MB.2017.0037-15 %G en %F 10_21136_MB_2017_0037_15
Ahmed, Ahmed; Ahmedatt, Taghi; Hjiaj, Hassane; Touzani, Abdelfattah. Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 243-262. doi : 10.21136/MB.2017.0037-15. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0037-15/
Cité par Sources :