A note on star Lindelöf, first countable and normal spaces
Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 445-448.
Voir la notice de l'article dans Czech Digital Mathematics Library
A topological space $X$ is said to be star Lindelöf if for any open cover $\mathcal U$ of $X$ there is a Lindelöf subspace $A \subset X$ such that $\operatorname {St}(A, \mathcal U)=X$. The “extent” $e(X)$ of $X$ is the supremum of the cardinalities of closed discrete subsets of $X$. We prove that under $V=L$ every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under $\rm MA +\nobreak \neg CH$, which shows that a star Lindelöf, first countable and normal space may not have countable extent.
DOI :
10.21136/MB.2017.0012-17
Classification :
54D20, 54E35
Mots-clés : star Lindelöf space; first countable space; normal space; countable extent
Mots-clés : star Lindelöf space; first countable space; normal space; countable extent
@article{10_21136_MB_2017_0012_17, author = {Xuan, Wei-Feng}, title = {A note on star {Lindel\"of,} first countable and normal spaces}, journal = {Mathematica Bohemica}, pages = {445--448}, publisher = {mathdoc}, volume = {142}, number = {4}, year = {2017}, doi = {10.21136/MB.2017.0012-17}, mrnumber = {3739027}, zbl = {06819595}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0012-17/} }
TY - JOUR AU - Xuan, Wei-Feng TI - A note on star Lindelöf, first countable and normal spaces JO - Mathematica Bohemica PY - 2017 SP - 445 EP - 448 VL - 142 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0012-17/ DO - 10.21136/MB.2017.0012-17 LA - en ID - 10_21136_MB_2017_0012_17 ER -
Xuan, Wei-Feng. A note on star Lindelöf, first countable and normal spaces. Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 445-448. doi : 10.21136/MB.2017.0012-17. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0012-17/
Cité par Sources :