A note on star Lindelöf, first countable and normal spaces
Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 445-448.

Voir la notice de l'article dans Czech Digital Mathematics Library

A topological space $X$ is said to be star Lindelöf if for any open cover $\mathcal U$ of $X$ there is a Lindelöf subspace $A \subset X$ such that $\operatorname {St}(A, \mathcal U)=X$. The “extent” $e(X)$ of $X$ is the supremum of the cardinalities of closed discrete subsets of $X$. We prove that under $V=L$ every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under $\rm MA +\nobreak \neg CH$, which shows that a star Lindelöf, first countable and normal space may not have countable extent.
DOI : 10.21136/MB.2017.0012-17
Classification : 54D20, 54E35
Mots-clés : star Lindelöf space; first countable space; normal space; countable extent
@article{10_21136_MB_2017_0012_17,
     author = {Xuan, Wei-Feng},
     title = {A note on star {Lindel\"of,} first countable and normal spaces},
     journal = {Mathematica Bohemica},
     pages = {445--448},
     publisher = {mathdoc},
     volume = {142},
     number = {4},
     year = {2017},
     doi = {10.21136/MB.2017.0012-17},
     mrnumber = {3739027},
     zbl = {06819595},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0012-17/}
}
TY  - JOUR
AU  - Xuan, Wei-Feng
TI  - A note on star Lindelöf, first countable and normal spaces
JO  - Mathematica Bohemica
PY  - 2017
SP  - 445
EP  - 448
VL  - 142
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0012-17/
DO  - 10.21136/MB.2017.0012-17
LA  - en
ID  - 10_21136_MB_2017_0012_17
ER  - 
%0 Journal Article
%A Xuan, Wei-Feng
%T A note on star Lindelöf, first countable and normal spaces
%J Mathematica Bohemica
%D 2017
%P 445-448
%V 142
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0012-17/
%R 10.21136/MB.2017.0012-17
%G en
%F 10_21136_MB_2017_0012_17
Xuan, Wei-Feng. A note on star Lindelöf, first countable and normal spaces. Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 445-448. doi : 10.21136/MB.2017.0012-17. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0012-17/

Cité par Sources :