When spectra of lattices of $z$-ideals are Stone-Čech compactifications
Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 323-336.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $X$ be a completely regular Hausdorff space and, as usual, let $C(X)$ denote the ring of real-valued continuous functions on $X$. The lattice of $z$-ideals of $C(X)$ has been shown by Martínez and Zenk (2005) to be a frame. We show that the spectrum of this lattice is (homeomorphic to) $\beta X$ precisely when $X$ is a $P$-space. This we actually show to be true not only in spaces, but in locales as well. Recall that an ideal of a commutative ring is called a $d$-ideal if whenever two elements have the same annihilator and one of the elements belongs to the ideal, then so does the other. We characterize when the spectrum of the lattice of $d$-ideals of $C(X)$ is the Stone-Čech compactification of the largest dense sublocale of the locale determined by $X$. It is precisely when the closure of every open set of $X$ is the closure of some cozero-set of $X$.
DOI :
10.21136/MB.2017.0009-16
Classification :
06D22, 13A15, 18A40, 54D35, 54E17
Mots-clés : completely regular frame; coherent frame; $z$-ideal; $d$-ideal; Stone-Čech compactification; booleanization
Mots-clés : completely regular frame; coherent frame; $z$-ideal; $d$-ideal; Stone-Čech compactification; booleanization
@article{10_21136_MB_2017_0009_16, author = {Dube, Themba}, title = {When spectra of lattices of $z$-ideals are {Stone-\v{C}ech} compactifications}, journal = {Mathematica Bohemica}, pages = {323--336}, publisher = {mathdoc}, volume = {142}, number = {3}, year = {2017}, doi = {10.21136/MB.2017.0009-16}, mrnumber = {3695470}, zbl = {06770149}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0009-16/} }
TY - JOUR AU - Dube, Themba TI - When spectra of lattices of $z$-ideals are Stone-Čech compactifications JO - Mathematica Bohemica PY - 2017 SP - 323 EP - 336 VL - 142 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0009-16/ DO - 10.21136/MB.2017.0009-16 LA - en ID - 10_21136_MB_2017_0009_16 ER -
%0 Journal Article %A Dube, Themba %T When spectra of lattices of $z$-ideals are Stone-Čech compactifications %J Mathematica Bohemica %D 2017 %P 323-336 %V 142 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0009-16/ %R 10.21136/MB.2017.0009-16 %G en %F 10_21136_MB_2017_0009_16
Dube, Themba. When spectra of lattices of $z$-ideals are Stone-Čech compactifications. Mathematica Bohemica, Tome 142 (2017) no. 3, pp. 323-336. doi : 10.21136/MB.2017.0009-16. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0009-16/
Cité par Sources :