Changing of the domination number of a graph: edge multisubdivision and edge removal
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 9-20.

Voir la notice de l'article dans Czech Digital Mathematics Library

For a graphical property $\mathcal {P}$ and a graph $G$, a subset $S$ of vertices of $G$ is a $\mathcal {P}$-set if the subgraph induced by $S$ has the property $\mathcal {P}$. The domination number with respect to the property $\mathcal {P}$, denoted by $\gamma _{\mathcal {P}} (G)$, is the minimum cardinality of a dominating $\mathcal {P}$-set. We define the domination multisubdivision number with respect to $\mathcal {P}$, denoted by ${\rm msd} _{\mathcal {P}}(G)$, as a minimum positive integer $k$ such that there exists an edge which must be subdivided $k$ times to change $\gamma _{\mathcal {P}} (G)$. In this paper \item {(a)} we present necessary and sufficient conditions for a change of $\gamma _{\mathcal {P}}(G)$ after subdividing an edge of $G$ once, \item {(b)} we prove that if $e$ is an edge of a graph $G$ then $\gamma _{\mathcal {P}} (G_{e,1}) \gamma _{\mathcal {P}} (G)$ if and only if $\gamma _{\mathcal {P}} (G-e) \gamma _{\mathcal {P}} (G)$ ($G_{e,t}$ denotes the graph obtained from $G$ by subdivision of $e$ with $t$ vertices), \item {(c)} we also prove that for every edge of a graph $G$ we have $\gamma _{\mathcal {P}}(G-e)\leq \gamma _{\mathcal {P}}(G_{e,3})\leq \gamma _{\mathcal {P}}(G-e) + 1$, and \item {(d)} we show that ${\rm msd}_{\mathcal {P}}(G) \leq 3$, where $\mathcal {P}$ is hereditary and closed under union with $K_1$.
DOI : 10.21136/MB.2017.0009-15
Classification : 05C69
Mots-clés : dominating set; edge subdivision; domination multisubdivision number; hereditary graph property
@article{10_21136_MB_2017_0009_15,
     author = {Samodivkin, Vladimir},
     title = {Changing of the domination number of a graph: edge multisubdivision and edge removal},
     journal = {Mathematica Bohemica},
     pages = {9--20},
     publisher = {mathdoc},
     volume = {142},
     number = {1},
     year = {2017},
     doi = {10.21136/MB.2017.0009-15},
     mrnumber = {3619983},
     zbl = {06738566},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0009-15/}
}
TY  - JOUR
AU  - Samodivkin, Vladimir
TI  - Changing of the domination number of a graph: edge multisubdivision and edge removal
JO  - Mathematica Bohemica
PY  - 2017
SP  - 9
EP  - 20
VL  - 142
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0009-15/
DO  - 10.21136/MB.2017.0009-15
LA  - en
ID  - 10_21136_MB_2017_0009_15
ER  - 
%0 Journal Article
%A Samodivkin, Vladimir
%T Changing of the domination number of a graph: edge multisubdivision and edge removal
%J Mathematica Bohemica
%D 2017
%P 9-20
%V 142
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0009-15/
%R 10.21136/MB.2017.0009-15
%G en
%F 10_21136_MB_2017_0009_15
Samodivkin, Vladimir. Changing of the domination number of a graph: edge multisubdivision and edge removal. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 9-20. doi : 10.21136/MB.2017.0009-15. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0009-15/

Cité par Sources :