Antiassociative groupoids
Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 27-46.

Voir la notice de l'article dans Czech Digital Mathematics Library

Given a groupoid $\langle G, \star \rangle $, and $k \geq 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. \endgraf We prove that for every $k \geq 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.
DOI : 10.21136/MB.2017.0006-15
Classification : 08A99, 20N02, 68Q99, 68R15, 68T15
Mots-clés : groupoid; unification
@article{10_21136_MB_2017_0006_15,
     author = {Braitt, Milton and Hobby, David and Silberger, Donald},
     title = {Antiassociative groupoids},
     journal = {Mathematica Bohemica},
     pages = {27--46},
     publisher = {mathdoc},
     volume = {142},
     number = {1},
     year = {2017},
     doi = {10.21136/MB.2017.0006-15},
     mrnumber = {3619985},
     zbl = {06738568},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0006-15/}
}
TY  - JOUR
AU  - Braitt, Milton
AU  - Hobby, David
AU  - Silberger, Donald
TI  - Antiassociative groupoids
JO  - Mathematica Bohemica
PY  - 2017
SP  - 27
EP  - 46
VL  - 142
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0006-15/
DO  - 10.21136/MB.2017.0006-15
LA  - en
ID  - 10_21136_MB_2017_0006_15
ER  - 
%0 Journal Article
%A Braitt, Milton
%A Hobby, David
%A Silberger, Donald
%T Antiassociative groupoids
%J Mathematica Bohemica
%D 2017
%P 27-46
%V 142
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0006-15/
%R 10.21136/MB.2017.0006-15
%G en
%F 10_21136_MB_2017_0006_15
Braitt, Milton; Hobby, David; Silberger, Donald. Antiassociative groupoids. Mathematica Bohemica, Tome 142 (2017) no. 1, pp. 27-46. doi : 10.21136/MB.2017.0006-15. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2017.0006-15/

Cité par Sources :