Some relations satisfied by Hermite-Hermite matrix polynomials
Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 145-162.

Voir la notice de l'article dans Czech Digital Mathematics Library

The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the Hermite-Hermite matrix polynomials. Finally, we establish general families and several new results concerning generalized Hermite-Hermite matrix polynomials.
DOI : 10.21136/MB.2016.0001-15
Classification : 15A60, 33C45, 33C50, 33C80, 34A25, 44A45
Mots-clés : Hermite-Hermite polynomials; matrix generating functions; orthogonality property; Rodrigues formula; associated Hermite-Hermite polynomials; generalized Hermite-Hermite matrix polynomials
@article{10_21136_MB_2016_0001_15,
     author = {Shehata, Ayman and Upadhyaya, Lalit Mohan},
     title = {Some relations satisfied by {Hermite-Hermite} matrix polynomials},
     journal = {Mathematica Bohemica},
     pages = {145--162},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2017},
     doi = {10.21136/MB.2016.0001-15},
     mrnumber = {3660172},
     zbl = {06738576},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2016.0001-15/}
}
TY  - JOUR
AU  - Shehata, Ayman
AU  - Upadhyaya, Lalit Mohan
TI  - Some relations satisfied by Hermite-Hermite matrix polynomials
JO  - Mathematica Bohemica
PY  - 2017
SP  - 145
EP  - 162
VL  - 142
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2016.0001-15/
DO  - 10.21136/MB.2016.0001-15
LA  - en
ID  - 10_21136_MB_2016_0001_15
ER  - 
%0 Journal Article
%A Shehata, Ayman
%A Upadhyaya, Lalit Mohan
%T Some relations satisfied by Hermite-Hermite matrix polynomials
%J Mathematica Bohemica
%D 2017
%P 145-162
%V 142
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2016.0001-15/
%R 10.21136/MB.2016.0001-15
%G en
%F 10_21136_MB_2016_0001_15
Shehata, Ayman; Upadhyaya, Lalit Mohan. Some relations satisfied by Hermite-Hermite matrix polynomials. Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 145-162. doi : 10.21136/MB.2016.0001-15. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2016.0001-15/

Cité par Sources :