Self-diclique circulant digraphs
Mathematica Bohemica, Tome 140 (2015) no. 3, pp. 361-367.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study a particular digraph dynamical system, the so called digraph diclique operator. Dicliques have frequently appeared in the literature the last years in connection with the construction and analysis of different types of networks, for instance biochemical, neural, ecological, sociological and computer networks among others. Let D=(V,A) be a reflexive digraph (or network). Consider X and Y (not necessarily disjoint) nonempty subsets of vertices (or nodes) of D. A disimplex K(X,Y) of D is the subdigraph of D with vertex set XY and arc set {(x,y):xX, yY} (when XY, loops are not considered). A disimplex K(X,Y) of D is called a diclique of D if K(X,Y) is not a proper subdigraph of any other disimplex of D. The diclique digraph k(D) of a digraph D is the digraph whose vertex set is the set of all dicliques of D and (K(X,Y),K(X,Y)) is an arc of k(D) if and only if YX. We say that a digraph D is self-diclique if k(D) is isomorphic to D. In this paper, we provide a characterization of the self-diclique circulant digraphs and an infinite family of non-circulant self-diclique digraphs.
DOI : 10.21136/MB.2015.144401
Classification : 05C20, 68R10
Mots-clés : circulant digraph; diclique; diclique operator; self-diclique digraph; graph dynamics
@article{10_21136_MB_2015_144401,
     author = {Frick, Marietjie and Llano, Bernardo and Zuazua, Rita},
     title = {Self-diclique circulant digraphs},
     journal = {Mathematica Bohemica},
     pages = {361--367},
     publisher = {mathdoc},
     volume = {140},
     number = {3},
     year = {2015},
     doi = {10.21136/MB.2015.144401},
     mrnumber = {3397263},
     zbl = {06486945},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144401/}
}
TY  - JOUR
AU  - Frick, Marietjie
AU  - Llano, Bernardo
AU  - Zuazua, Rita
TI  - Self-diclique circulant digraphs
JO  - Mathematica Bohemica
PY  - 2015
SP  - 361
EP  - 367
VL  - 140
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144401/
DO  - 10.21136/MB.2015.144401
LA  - en
ID  - 10_21136_MB_2015_144401
ER  - 
%0 Journal Article
%A Frick, Marietjie
%A Llano, Bernardo
%A Zuazua, Rita
%T Self-diclique circulant digraphs
%J Mathematica Bohemica
%D 2015
%P 361-367
%V 140
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144401/
%R 10.21136/MB.2015.144401
%G en
%F 10_21136_MB_2015_144401
Frick, Marietjie; Llano, Bernardo; Zuazua, Rita. Self-diclique circulant digraphs. Mathematica Bohemica, Tome 140 (2015) no. 3, pp. 361-367. doi : 10.21136/MB.2015.144401. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144401/

Cité par Sources :