Generalized trigonometric functions in complex domain
Mathematica Bohemica, Tome 140 (2015) no. 2, pp. 223-239.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study extension of p-trigonometric functions sinp and cosp to complex domain. For p=4,6,8,, the function sinp satisfies the initial value problem which is equivalent to (*) $$-(u')^{p-2}u''-u^{p-1} =0, \quad u(0)=0, \quad u'(0)=1 $$in R. In our recent paper, Girg, Kotrla (2014), we showed that sinp(x) is a real analytic function for p=4,6,8, on (πp/2,πp/2), where πp/2=01(1sp)1/p. This allows us to extend sinp to complex domain by its Maclaurin series convergent on the disc {zC:|z|πp/2}. The question is whether this extensions sinp(z) satisfies (*) in the sense of differential equations in complex domain. This interesting question was posed by Došlý and we show that the answer is affirmative. We also discuss the difficulties concerning the extension of sinp to complex domain for p=3,5,7, Moreover, we show that the structure of the complex valued initial value problem (*) does not allow entire solutions for any pN, p>2. Finally, we provide some graphs of real and imaginary parts of sinp(z) and suggest some new conjectures.
DOI : 10.21136/MB.2015.144328
Classification : 33E20, 33E30, 34B15, 34M05, 34M99
Mots-clés : p-Laplacian; differential equations in complex domain; extension of sinp
@article{10_21136_MB_2015_144328,
     author = {Girg, Petr and Kotrla, Luk\'a\v{s}},
     title = {Generalized trigonometric functions in complex domain},
     journal = {Mathematica Bohemica},
     pages = {223--239},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2015},
     doi = {10.21136/MB.2015.144328},
     mrnumber = {3368496},
     zbl = {06486936},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144328/}
}
TY  - JOUR
AU  - Girg, Petr
AU  - Kotrla, Lukáš
TI  - Generalized trigonometric functions in complex domain
JO  - Mathematica Bohemica
PY  - 2015
SP  - 223
EP  - 239
VL  - 140
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144328/
DO  - 10.21136/MB.2015.144328
LA  - en
ID  - 10_21136_MB_2015_144328
ER  - 
%0 Journal Article
%A Girg, Petr
%A Kotrla, Lukáš
%T Generalized trigonometric functions in complex domain
%J Mathematica Bohemica
%D 2015
%P 223-239
%V 140
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144328/
%R 10.21136/MB.2015.144328
%G en
%F 10_21136_MB_2015_144328
Girg, Petr; Kotrla, Lukáš. Generalized trigonometric functions in complex domain. Mathematica Bohemica, Tome 140 (2015) no. 2, pp. 223-239. doi : 10.21136/MB.2015.144328. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144328/
  • Girg, Petr; Kotrla, Lukáš p-trigonometric and p-hyperbolic functions in complex domain, Abstract and Applied Analysis, Volume 2016 (2016), p. 18 (Id/No 3249439) | DOI:10.1155/2016/3249439 | Zbl:1470.33001

Cité par 1 document. Sources : zbMATH