Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $
Mathematica Bohemica, Tome 140 (2015) no. 1, pp. 43-52.

Voir la notice de l'article dans Czech Digital Mathematics Library

The objective of this paper is to obtain sharp upper bound for the function $f$ for the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$, when it belongs to the class of functions whose derivative has a positive real part of order $\alpha $ $(0\leq \alpha 1)$, denoted by $ RT(\alpha )$. Further, an upper bound for the inverse function of $f$ for the nonlinear functional (also called the second Hankel functional), denoted by $|t_{2}t_{4}-t_{3}^{2}|$, was determined when it belongs to the same class of functions, using Toeplitz determinants.
DOI : 10.21136/MB.2015.144178
Classification : 30C45, 30C50
Mots-clés : analytic function; upper bound; second Hankel functional; positive real function; Toeplitz determinant
@article{10_21136_MB_2015_144178,
     author = {Krishna, Deekonda Vamshee and Ramreddy, Thoutreddy},
     title = {Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $},
     journal = {Mathematica Bohemica},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {140},
     number = {1},
     year = {2015},
     doi = {10.21136/MB.2015.144178},
     mrnumber = {3324418},
     zbl = {06433697},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144178/}
}
TY  - JOUR
AU  - Krishna, Deekonda Vamshee
AU  - Ramreddy, Thoutreddy
TI  - Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $
JO  - Mathematica Bohemica
PY  - 2015
SP  - 43
EP  - 52
VL  - 140
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144178/
DO  - 10.21136/MB.2015.144178
LA  - en
ID  - 10_21136_MB_2015_144178
ER  - 
%0 Journal Article
%A Krishna, Deekonda Vamshee
%A Ramreddy, Thoutreddy
%T Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $
%J Mathematica Bohemica
%D 2015
%P 43-52
%V 140
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144178/
%R 10.21136/MB.2015.144178
%G en
%F 10_21136_MB_2015_144178
Krishna, Deekonda Vamshee; Ramreddy, Thoutreddy. Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $. Mathematica Bohemica, Tome 140 (2015) no. 1, pp. 43-52. doi : 10.21136/MB.2015.144178. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144178/

Cité par Sources :