Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $
Mathematica Bohemica, Tome 140 (2015) no. 1, pp. 43-52.
Voir la notice de l'article dans Czech Digital Mathematics Library
The objective of this paper is to obtain sharp upper bound for the function $f$ for the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$, when it belongs to the class of functions whose derivative has a positive real part of order $\alpha $ $(0\leq \alpha 1)$, denoted by $ RT(\alpha )$. Further, an upper bound for the inverse function of $f$ for the nonlinear functional (also called the second Hankel functional), denoted by $|t_{2}t_{4}-t_{3}^{2}|$, was determined when it belongs to the same class of functions, using Toeplitz determinants.
DOI :
10.21136/MB.2015.144178
Classification :
30C45, 30C50
Mots-clés : analytic function; upper bound; second Hankel functional; positive real function; Toeplitz determinant
Mots-clés : analytic function; upper bound; second Hankel functional; positive real function; Toeplitz determinant
@article{10_21136_MB_2015_144178, author = {Krishna, Deekonda Vamshee and Ramreddy, Thoutreddy}, title = {Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $}, journal = {Mathematica Bohemica}, pages = {43--52}, publisher = {mathdoc}, volume = {140}, number = {1}, year = {2015}, doi = {10.21136/MB.2015.144178}, mrnumber = {3324418}, zbl = {06433697}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144178/} }
TY - JOUR AU - Krishna, Deekonda Vamshee AU - Ramreddy, Thoutreddy TI - Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $ JO - Mathematica Bohemica PY - 2015 SP - 43 EP - 52 VL - 140 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144178/ DO - 10.21136/MB.2015.144178 LA - en ID - 10_21136_MB_2015_144178 ER -
%0 Journal Article %A Krishna, Deekonda Vamshee %A Ramreddy, Thoutreddy %T Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $ %J Mathematica Bohemica %D 2015 %P 43-52 %V 140 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144178/ %R 10.21136/MB.2015.144178 %G en %F 10_21136_MB_2015_144178
Krishna, Deekonda Vamshee; Ramreddy, Thoutreddy. Coefficient inequality for a function whose derivative has a positive real part of order $\alpha $. Mathematica Bohemica, Tome 140 (2015) no. 1, pp. 43-52. doi : 10.21136/MB.2015.144178. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144178/
Cité par Sources :