The ${\mathcal L}^m_n$-propositional calculus
Mathematica Bohemica, Tome 140 (2015) no. 1, pp. 11-33.
Voir la notice de l'article dans Czech Digital Mathematics Library
T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the ${\mathcal L}^{m}_{n}$-propositional calculus, denoted by ${\ell ^{m}_{n}}$, is introduced in terms of the binary connectives $\to $ (implication), $\twoheadrightarrow $ (standard implication), $\wedge $ (conjunction), $\vee $ (disjunction) and the unary ones $f$ (negation) and $D_{i}$, $1\leq i\leq n-1$ (generalized Moisil operators). It is proved that ${\ell ^{m}_{n}}$ belongs to the class of standard systems of implicative extensional propositional calculi. Besides, it is shown that the definitions of $L^{m}_{n}$-algebra and ${\ell ^{m}_{n}}$-algebra are equivalent. Finally, the completeness theorem for ${\ell ^{m}_{n}}$ is obtained.
DOI :
10.21136/MB.2015.144176
Classification :
03B60, 03G10, 06D99
Mots-clés : Łukasiewicz algebra of order $n$; $m$-generalized Łukasiewicz algebra of order $n$; equationally definable principal congruences; implicative extensional propositional calculus; completeness theorem
Mots-clés : Łukasiewicz algebra of order $n$; $m$-generalized Łukasiewicz algebra of order $n$; equationally definable principal congruences; implicative extensional propositional calculus; completeness theorem
@article{10_21136_MB_2015_144176, author = {Gallardo, Carlos and Ziliani, Alicia}, title = {The ${\mathcal L}^m_n$-propositional calculus}, journal = {Mathematica Bohemica}, pages = {11--33}, publisher = {mathdoc}, volume = {140}, number = {1}, year = {2015}, doi = {10.21136/MB.2015.144176}, mrnumber = {3324416}, zbl = {06433695}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144176/} }
TY - JOUR AU - Gallardo, Carlos AU - Ziliani, Alicia TI - The ${\mathcal L}^m_n$-propositional calculus JO - Mathematica Bohemica PY - 2015 SP - 11 EP - 33 VL - 140 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144176/ DO - 10.21136/MB.2015.144176 LA - en ID - 10_21136_MB_2015_144176 ER -
%0 Journal Article %A Gallardo, Carlos %A Ziliani, Alicia %T The ${\mathcal L}^m_n$-propositional calculus %J Mathematica Bohemica %D 2015 %P 11-33 %V 140 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144176/ %R 10.21136/MB.2015.144176 %G en %F 10_21136_MB_2015_144176
Gallardo, Carlos; Ziliani, Alicia. The ${\mathcal L}^m_n$-propositional calculus. Mathematica Bohemica, Tome 140 (2015) no. 1, pp. 11-33. doi : 10.21136/MB.2015.144176. https://geodesic-test.mathdoc.fr/articles/10.21136/MB.2015.144176/
Cité par Sources :